1/23/23, 12:02 AM

Programming Language - C & C**

Memo_PL_Cplusplus

Escape Sequence

Table 3.2. C++ Escape Sequence Codes

P | o] -

E—--A s “———=-mmmO o o=k || 5== |

Character ASCHl C++ ASCII Decimal

Name Symbol Code Code ASCIl Hex Code

Newling NL (LF} W1 10 OxA

Horizontal tab HT A\t 9 Oxg

Vertical tab VT \w 3 oxB

Backspace BS \b 8 Ox8

Carriage return CR \r 13 OxD

Alert BEL \a T ox7

Backslash Y XN 92 0x5C

Question mark 7 W2 63 Ox3F

Single quote ! 39 Ox27

Double quote Ll 34 Ox22

ASCII control ASCI printable Extended ASCII
characters characters characters

00 MULL {Null character) 32 space 64 @ 96 28 ¢ 180 & 192
01 SOH (Start of Header) 33 ! 65 A 97 a 129 i 161 i 193
0z STX (Start of Text) 34 " 66 B 98 b 130 é 162] 194
03 ETX {End of Text) 35 # 67 [99 [13 a 163 1] 195
04 EQT (End of Trans.) 36 % G D 100 d 132 a 164 fi 196
05 ENQ (Enquiry) ar Y 69 E 101 e 133 a 165 0] 197
06 ACK (Acknowledgement) 38 & 70 F 102 f 134 a 166 = 198
07 BEL (Bell) 39 ' 71 G 103 g 135 G 167 ° 199
08 BS (Backspace) 40 { 72 H 104 h 136 & 168 4 | 200
09 HT (Horizontal Tab) 41) T3 1 105 i 137 é 169 ® 20m
10 LF (Line feed) 42 = T4 J 106] 138 é 170 bl 202
11 VT (Vertical Tab) 43 + 75 K 107 K 139 T 71 Ve 203
12 FF (Form feed) 44 , T L 108 | 140 T 172 A 204
13 CR (Carriage return) 45 - 77 M 108 m 141 1 173 i 205
14 S0 (Shift Qut) 46 2 T8 N 110 n 142 A 174 « 206
18] (Shift In) 47 1 78 o] aall o 143 A 175 » 207
16 DLE (Datalink escape) 48 0 80 P 12 p 144 E 176 208
17 DC1 (Device control 1) 49 1 81 Q 113 q 145] 177 209
18 DC2 (Device control 2) 50 2 82 R 114 r 146 £ 178 210
19 DC3 (Device control 3) 51 3 83 5 115 5 147] 179 211
20 DC4 (Device control 4) 52 4 a4 T 116 t 148 -] 180 212
21 NAK (Negative acknowl) 53 5 8 U |17 u 149 @& (181 A | 213
22 SYN (Synchronous idie) 54 6 86 V118 v 150 a4 182 A 214
23 ETB (End of trans. block) 55 7 a7 w 119 w 151 [] 183 A 215
24 CAN (Cancel) 56] 88 X 120 X 152 ¥ 184 o] 216
25 EM (End of medium) 57 9 89 Y 121 y 153 o] 185 3 217
26 SUB [Substitute) 58 g 90 Zz 122 z 154] 186 | 218
27 ESC (Escape) 59 H 9 [123 { 155 a 187 ﬂ 219
28 FS (File separator) 60 < 92 \ 124 | 156 £ 188 4 220
29 Gs (Group separator) 61 = 93 1 125 } 157 a 189 ¢ 22
30 RS (Record separator) 62 > 94 & 126 ~ 158 x 190 ¥ 222
31 US {Unit separator) 63 ? 95 _ 159 f 191 4 223
127 DEL (Delete)

Variables

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

| COCTTE OO = O

B m

- un =A R0

1 e

L]
nbsp

1/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

#include <iostream:-
using namespace std;

int Integer:;

char aCharacter;

char string [20];
unsigned int HumberOfSons;

Global variables

{

int main ()

unsigned short Age;
float AHumher, AnotherOne ;

Local variahles

cout <= "Entexr your age:";
cin > Bge;

Instructions

"
H
3
;
5
4 Memory map
N (Process’s memory)
)
@ RAM
H E Stack
grn Process #1 E/ (Static memory allocatiom)
M3 b |
ok RAM Display E]
g 168 Devices
4
] Al
4 | o8 Free space
2
3 3GB
fa— Free space @ Shared memory/libraries
@ % @
e
3o MBR Free space
e
S I oxs Process #13
§e
E.%]
g Free space
' Heap
H
S (T o il (Dynamic memory allocatien)
Static code
(Executable image/cbject)

(per process)

Lower memory address

(c) yousha.blog.ir - Iran

Virtual memory

Stack
allocate by function call: params, return address,
non-static local variables
deallocate by return(), process finish
readable/writable
specific per thread
Cause StackOverFlow

Free space / <- Guard page —>

Shared memory / Shared libraries
contains msvcr.dll, libc.so ...

Free space

Heap
allocate by malloc(), new at runtime
deallocate by free(), delete or process finish
readable/writable
shared in all threads
Cause OutOfMemoryError, memory leak

.bss segment
allocate by uninitialized/zero static/global vars
deallocate at process finish
readable/writable

.data segment
allocate by initialized/non-zere static/global vars
deallocate at process finish
readable/writable

.text segment (ELF)
allocate by codes(functions, consts) at process startup
deallocate at process finish

¥ (
contains binary-image/instructions

Variable declaration and cin

¢ if and while s

C++ pro

Variable declaration

* Before we use a variable, we must first declare it.
— We need to specify its name and data type.

* The syntax oﬁ a yariable declaration statement is
— For example,

declares an integer variable called myInt.
* Avariable name is an identifier.
. e T "
— We do not need to memorize the memory
address (which is a sequence of numbers).
— We access the space through the variable name.

Address Identifier Value
ox22fddc | myInt 222
Memory

Programming Design — Introduction 21/62

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chich Kung (NTU IM)

2/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

d cout

Variable declaration and cin

¢ if and while statements

Declaration and assignment

Beside declaring a variable, we may also assign
values to a variable.

— int myInt; declares an integer variable.
— myInt = 10; assigns 10 to myInt.
We may do these together:

Iqle variable name = initial value;yl

—|int _yourInt = 5;|declares an integer

variable yourInt and assigns 5 to it.

— The assignment is called initialization if it is
done with declaration.

@ initialization,) the variable may be of any
_value (depending on what was left since the last

time this space is used)!

Address Identifier Value

0x20c648 | yourInt 5
0x22fd4c myInt 10
Memory

Programming Design — Introduction 24/62

Ling-Chich Kung (NTU IM)

Variable declaration and cin

e if

nd while statements

C++ progra

When we execute this program

Address Identifier Value
#i{xclude <.1°stxveant|: " / G
using namespace ‘std; (3) | 0%20c630 |/(no name))| 17
S
int main()
{
int muml = 13, num2 = 4;
cout << numl + num2; (1) | ox20ce48 numl 13
return 0;
}
(@) 0x22fd4c num2 4
Console Memory
Programming Design — Introduction 30/62 Ling-Chich Kung (NTU IM)
(3 cout Variable declaration and cin

e if

d while state

C++ progra

When we execute this program

Address Identifier Value
#include <iostream>
using namespace std; 3)
int main()
{
int numl = 13, num2 = 4;
‘cout << muml + Tum2; (1) | ox2o0ces8 numl 13
return 0;
}
(2) | 0x22fddc num2 4
@ |[=_]
Console Memory
Programming Design — Introduction 31/62 Ling-Chich Kung (NTU IM)
Storage Class Specifier (Keyword) | Visibility (Scope) Lifetime
Automatic Mone (or auto) Function Function
Register register Function Function
Local static static Function Program
External (definition) Mone File (can be declared in other files) Program
External (declaration) | extern File Program
External static File {can’t be declared in other files) | Program

Preprocessors

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

3/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Source Code

File(program.c)

Preprocessors

Expanded source code
file(program.l)

Compiler

Object Code(program.obij)

Linker

Executable File
(program.exe)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 4/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Source code
(e.g my.cpp)

D

Preprocessor

Preprocessed
Source Code

ye—]

Compiler

Object Code
(my.obj)

Library

Namespace

Linker

Executable Code
(my.exe)

Namespace

Schemal

omethingl

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ohjectl tem2
Object_n

5/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Selection and Repetition

LT

Namespace

Control structures in C++

C++ Control
Structure

Sequence
structure

Selection
Structure

Repletion
structure

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

If, if... else,
switch

While,
do...while,
for

6/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

3. Control Structures

Bohm, Jacopini (1966) showed that only the three following
control structures are needed for representing an algorithm:

Sequence 2.1. Selection 2.2. Repetition
Choosing one of Repetition of actions
several courses of or sequences of
action according to actions according to

some condition some condition

Syntax Constructs:

if hil
se g . wilie
built in if/else
9 . for
switch do/while
09/15/08 MET CS 563 -Fall 2008 1
3. Control Structures
Sequence Selection Looping

| Instruction

instruction

instruction instruction

| instruction

' instruction l |

Selection

« A Selection control structure is used to
choose among alternative courses of action.
» There must be some condition that
determines whether or not an action occurs.
* C++ has a number of selection control
structures:
— If
— if/felse
— switch

09/2013 C++ Programming L2.42

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 7/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Repetiti
Carries out a particular action over and over again until the condition is met.

Aloop is created to return the program to where the repetition has started for as long as it takes until the condition is
met.

There are two ways of testing to see if the end condition is met: 1) pre-test lbops 2) posttest loops.

In pre-test loops the condition is tested at the start. If the condition is false the first time, the processes will never
carry out. Pre-test loops end when the condition |s false. Uses WHILE ... ENDWHILE.

Counted loops are special types of pre-test loops. They are used when a known number of repetitions will occur.
Pre-test loops are also known as guarded loops because the loop is only operated when the condition is met.

Elowchart . |
Pseudocode
WHILE there is pressure on the mat
Pressure >~
Sound the bell onmets
ENDWHILE
1
Sound bell

]
—

Repetition (Loop)

Do-While Control Structure

* Repetition structure:
directs computer to
repeat one or more
instructions until some
condition is met

— Also called a loop or
iteration

Ternary If

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 8/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Conditional or Ternary Operator (?:).in C/C++

Resultant Value

| True l ‘
variable = Expression1 ? Expression2 :Expression3
False T’
Resultant Value
- J S/

Switch Case

switch| expression)

defaule
s d Statement - N

@«—®@—\

While

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 9/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

while Statement in C#+

#include <iostream>

Enter while loop

int main()

Test
{ condition FALSE
0)//// condition pemm

while

{ std::cout << “Hello there” <<std::endl;
count = count + 1;
}

return @;

Exit while loop

statements

Do-While

{ ™

Do - While Loop

1.
Lvdn
2.

il body of the loop
Il statements to be executed

5.a) If true
3. [—n-updatiﬂn
4 E}while { condition);
; |
i i

5.b) If false -
) L- /! statements outside the loop 26

Increment and Decrement Operators

OPERATOR | MEANING

++a Incrementa by 1, then use
new value of a

a++ Use value of a, then increment
aby1l
--b Decrementa by 1, then use

new value of a

b-- Use value of a, then
decrementa by 1

Scope of Variables

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

10/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Scope of variables

flinclude <iosteam.h>

int x;

e (3|0bal variables
char ch;

main()

{

int age;

3 |Local variables
float number;

cout << “Enter your age: “;
cin >> age;

} Lecturer: Hong Mom

For Loop

4 D
For Loop

3.b) If false

3.a) If true |
1. 2. 6.

I

for (initialization ; condition ; Updation)

{

/I body of the loop
/I statements to be executed

} 5.

4.

LT, // statements outside the loop 9G

Nested Loop

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 11/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Nested Loops

for (1=1 . i<=3- l++) For each run of the
i g outer loop, the inner
{ loop runs maximum
outen))) number of times.

Loop for (j=1; j<=3; j++) P P

Inner 1 1to3

G e 4—0 2 > 1t03

3 1to3

I Outer Loop Variable - i I }

I Inner Loop Variable - j I }

(€ Sumit Tiwari
\\@ (SeftEthies Tech.)

Break and Continue

for(i=1;i<=5;i++)
{
if(i==3)
break;
printf(“%d \n",i);
}

for(i=1;i<=5;i++)
{
if(i==3)
continue;
printf(“%d \n",i);
}

while (test expression) ?0
{

2 statement/s;
statement/g; if (condition)
if{condition) break:

break; . .
statement/s; statement/s;
H while (test expression});
CR L

for (int exp; test exp;update exp)
{
statement/s
if {condition)
break;
statement/s;

¥

Fig: Working of break statement in different loops

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

12/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

do {

while (test expression) { statement/s
statement/s if (test expression) {
if (test expression) { continue;

continue;

} statement/s
statement/s }

¥ while (test expression);

for (intial expression; test expression; update expression) {
statement/s
if (test expression) {
continue;

}
statements/
NOTE: The continue statment may also be ssed insdde body of elie statement.
Operations in C

Operatorsin C

Unary operator : Unary operator

Arithmetic operator

Relational operator

r r r -
. /
Binary operator | Logical operator

Bitwise operator

Assignment operator

Ternary operator ——» | - Ternary or
s conditional operator

Priority of Operations

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 13/88

1/23/23, 12:02 AM

8

Memo_PL_Cplusplus

Operalor Precedence

! Logical not

() Parenthesis

*J){J%
+. -

¥

>, >=, <, <=

&& (AND)

|| (OR)

(Highest)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

(Lowest)

Signs of operations Name of operation, explanation Associativity
O m. -> Primary From left to right
T e AR o Unary From right to left
sizeof (type)
(type cast)
L Multiplicative, arithmetical. binary From left to right
+ = Additive, arithmetical, binary From left to right
>> << Shift From left to right
< > <= >= Relation From left to right
= 1= Relation From left to right
& Bitwise "AND", logical, binary From left to right
2 Bitwise XOR, logical, binary From left to right
| Bitwise logical "OR", logical, binary From left to right
&& Logical "AND", binary From left to right
Il Logical "OR", binary From left to right
ar Conditional, ternary From right to left
= *= /= §= 4= -= Simple and complex assignment From right to left
<KL= P>= &= |= A=
. Sequential computation From left to right

Data Type

14/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

DataTypesin C/ C++

Primary Derived User Defined
— Integer — Function —— Class
— Character — Array —— Structure
— Boolean — Pointer —— Union
(—— Floating Point —— Reference f—Enum
l— Double Floating Point t— Typedef
— Void
— Wide Character
oG
AN "y
Key word Size in Interpretation| Possible values
bytes
bool 1 boolean true and false
unsigned char 1 Unsigned character 0 to 255
char (or signed char) 1 Signed character -128 to 127
wchar_t 2 Wide character (in windows, same 0to2'"-1
as unsigned short)
short (or signed short) 2 Signed integer 2% 1027 -1
unsigned short 2 Unsigned short integer 0to2'"-1
int (or signed int) 4 Signed integer -2%10 27 -]
unsigned int 4 Unsigned integer Oto 2%-1
Long (or long int or 4 signed long integer -2" 10 241
signed long)
unsigned long unsigned long integer 0to2%-1
float Signed single precision floating | 3.4*10* to 3.4*10"*(both
point (23 bits of significand, 8 bits positive and negative)
of exponent, and 1 sign bit.)
long long 8 Signed long long integer -2%t0 2% -1
unsigned long long Unsigned long long integer 0to 2%-1
double Signed double precision floating 1.7%10""to 1.7*10™*
point(52 bits of significand, 11 bits (both positive and
of exponent, and 1 sign bit.) negative)
long double 8 Signed double precision floating 1.7%10*ta 1.7*10™*
point(52 bits of gignificand, 11 bits (both positive and
of exponent, and 1 sign bit.) negative)

Casting

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

15/88

1/23/23, 12:02 AM Memo_PL_Cplusplus
long double
& double
float

unsigned long int

conversion
hierarchy long int
unsigned int
int
char short

C++ Casting Operators

* static_cast<type> (expr):

* static_cast operator is used to convert a given
expression to the specified type. For example, it
can be used to cast a base class pointer into a
derived class pointer.

int main() { In this type casting example,
inta=31; using the static_cast to an integer
intb=3: as "float" returns a float value.
float x = a/b;

float y = static_cast<float>(a)/b;
cout << "Output without static_cast =" << x << end|;
cout << "Output with static_cast =" <<y <<endl;

}
Lecture Slides By Adil Aslam

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 16/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Explicit type conversion

* C++ casts

- static cast between 2 related types
(int/float, int/enum, 2 pointers in class hierarchy)

- reinterpret_cast between 2 unrelated types
(int/ptr, pointers to 2 unrelated classes)

- const_cast cast away constness
- dynamic_cast used for polymorphic types
Run-time type info (RTTI)
* Avoid casts, but use these instead of C casts

— e.g., compiler can perform minimal checking for
static_cast, none for reinterpret cast

Array

Column subscript =
5| |arrlo] [0] |arefo] (1] |art 0] [3]
2| arr(u (07 [are1] (1] [are(1] 2]
¥ [are(21 0] [arr21 (1] [are(2] (2]

The array arr can be coneptually viewed in matrix form
with 3 rows and coloumns. point to be noted here is since
the subscript starts with 0 arr [0][0] represents the first

element.

Figure 12.4

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

17/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Array Declaration

An array is a collection of objects with same type stored
consecutively in memory

Declaring an array
IntCell arr[l0]; //an array consisting of 10 IntCell

cbjects
10 11 12 13 14 15 16 17 18 19

arr|

The size of the array must be known at compile time.

arr actually is a constant pointer. The value of arr cannot be
changed.

IntCell * p = new IntCell[10];
arr = p; // invalid
The (i+1)-st obéect in the array arr can be accessed either by
using arrfi], or by *(arr+i).
There is no index range checking for arrays in C++
Cannot be copied with =
Arrays are not passed by copy. Instead, the address of the first
element is passed to the function

21

int sumOfArray(int wvalues[], int numValues)
language built-in array container library array
#include <iostream= #include <iostreams=
[[#¥include <array= |
using namespace std; using namespace std;
int main() int main()
{ {
int myarray[3] = {10,20,30};| array<int,3> myarray {10,20,630};
for (int i=0; i<3; ++i) for (int i=0; i<myarray.size(); |++i)
++myarray[il; ++myarray[il;
for (int elem : myarray) for (int elem : myarray)
cout =< elem =< '\n'; cout =< elem =< '\n';
¥ ¥
Function

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

18/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

C++
Functions
A
[
[|

Built-in User-defined

functions functions
A =
Main program
G Function definition
Function protorype—{hmglﬂ?;iﬁ%j; \ - -
T el b T Funcl{ :l
B, {
it mam {) function body;
1
Function call | ,
Func2()
{
function body;
- } |

Function Prototype

{int heading (void)«—

{

//statements
return O;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

19/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Parameters

Function Definition

def add(a, b):
returna+ b

Function Call

add(2, 3)

gt T.com

Call by Value and Call by Reference

Call By Value

geek_func{vall, val2) A statpment calfing

LITES ek func
CrpatE & copy of

wak 10

vald 12

wal 1 and vl 211 | D 1 2

|

geek_func num?, num2)
{

¥ =40;

y = 50;

/f more statements

}

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 20/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Call By Reference

void main()

{
intn="10%
= =
func(&nj;
pl’il!'ltfl[

void func | int*add?)

coprammingin € —Call By

CaLLBY VALUE

The callte the function pases either the values
ar the normal variable 1o the called fanction.
The actual arguments are copied 1o the formal
argsments, kence any operaton perfarmed by
Fumction on aguments doesn’t affea actwal
paameters_

waid swap{nt a, int b

!

intt=a; azh; b=t

H

waoid msn] |

1

inta=h b=10;

printf|“Before swap: a=%db=%d" 2 b
swapiab); caling swap lnction®/
printl|"Aler swap: a=¥d b=¥d" a2 b);

I

Cutpuiz

Bekreswap:ass k=10

After swap: #=5b=10

Becsuse variable declared 's°, B in man|) &
different from variable ‘a”. B° in swap(l. Only
warishle names are simda but ther memory
sddrass are diflerant and stared in diffosent
memary lkacations.

CALL BY REFERENCE

The ca to the Tunction pases bme sddrem to
the called function. The xtual arguments ae
not copied fo the formal arguments, only
referencing & made Hence any operston
performed by fumtion on formal arguments [
parameters alfects actual parameters

woid change{imt b Ji

i

b0]=10; b 1}=20; Bl2J=30;

i

woid man| |

{

intafij={ 5,15 25},

printl[” Bebore Chamge:%d % d,%d" (0] 2] 1 2 2]k
changs|al; /“calling swap lunction ")

printl|” AfterChange:%d % d,% 4" al0] a L] 2 2]):

i

Ouiput:

BeforeChange:5.15.25

AherChange: 10,2030

Beemyse array varable declared B changell B
referencing! pointing to array varable 3" in
mamf]. Only wvariable name & dilferemt but
bath ae pointmg [relerencng to same
memary address kocations

CALL BY ADDRESS

The call io the function pmizes varisble’s
addres to thecaled function. The adual
arguments are nal coped Lo the formal
arguments, the sddresses of sctusl
arguments {or parameters) are paned ta
the formal parameters. Hemce any
operation performed by function on
bermal arguments f parameters affects
actual parameters.

woid swapfnl *x. nt "yl
= e

=
¥

woid maim| | {

inta=5, b=10;

printh|“Bebore swap: s=%d b=%d" a b
swap(Bakhbl [calling swap function®
printh|"After swap: 5= %d b=%d"a b

i

Cutput;

Before swap:a=5b=10

Alter swap:a=10b=5

Because varisble dedared ‘aT. B in
mainf) & different from varables %, Y i
swapll. Only varisble names are
dfferent but Both a and a, b and y peint
to the same memory address locations

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

21/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

CALL BY ADDRESS
VERSUS

CALL BY REFERENCE

CALL BY ADDRESS

CALL BY REFERENCE
EEEEEEEEEEEEEEEEEEER
A method of passing
arguments to a function by
copying the reference of an
argument into the formal
parameter

A way of calling a function
in which the address of the
actual arguments are copied

to the formal parameters

Programmer passes the
addresses of the actual
arguments to formal
parameters

Programmer passes the
references of the actual
arguments to the formal
parameters
EEEEEEEEEEEEEEEEEEEDR

EEEEEEEEEEEEEEEEEEDR
Memory is allocated for

both actual arguments and
formal parameters

Memory is allocated
only for actual
arguments and formal
parameters share that
memory

Visit www.PEDIAA .com

Passing Array to Function

Passing array to function in C

void func(int a[], int size)
{
Pointer a takes

the base address
of array arr

The length of arr
is passed. It is

int main()

{

int n=5;
intarr[5]={1,2,3,4,5};
func(arr, n);

return O;

Pointer

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

22/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

What's a Pointer in C++7?

int k * Avariable holding an address
. — Of what it “points to” in memory
* Can be untyped

void * v; // can point to any type

const int j

3 * However, usually they're typed
— Checked by compiler
int i .
— Can only be assigned addresses of
7

variables of the type to which it can point
int * p; // can only point to int
* Addresses: garbage, something, nothing
0x7£££dad0 — When created: int * p = i; VS. int * q;
qg=0; // now it points to nothing
P = NULL; // not portable, use 0 instead

r 3

int * p

CSE 232: C++ pointers, arrays, and references

Functiom Poimters

Applications
e w\ofa,

202 | Tnggr-0)

Lngtv-oz

Instr-»3

<< foo grom. e >> << bro dra'l‘\- exe>? 218 _:‘E"‘j;'-u <

. . nsir-o8

int main() 10010010 220 | Twnegr-o¢
(Compiter] = 110110 '
. = omptler| ic/Global 224 =N

printf("Hello"); = P e 11100011 228 ?:,‘:i: Zl.
} 10000011 => .

Swurce Code 10101010

Mac hine code 'w&cal

Double Pointer

Pointer to actual variable
pointer of var Pointer to var with a value

f

ptr2 ptr1

var

#2008

#3096 .

address of , |

S address of var
pointer pt2 r pt

Address Operation

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

23/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Introduction to C++

C++ Address of Operator (&)

* The & is a unary operator means it requires only
one operand.

* The Address of Operator returns the memory
address of its operand.

* Address of operator has the same precedence and
right-to-left associativity as that of other unary
operators.

* Symbol for the bitwise AND and the address of
operator are the same but they don’t have any
connection between them.

Lecture Slides By Adil Aslam

C++ Indirection/ Deference Operator *

* Getting the address of a variable isn’t very useful by
itself.

* The dereference operator (*) allows us to get the
value at a particular address:

* The Indirection operator * is a unary operator
means it requires only one operand.

* Indirection Operator (*) is the complement of
Address of Operator (&).

* Indirection Operator returns the value of the
variable located at the address specified by its
operand.

Lecture Slides By Adil Aslam

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

24/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Introduction to C++

Reference Operator (&) and Deference Operator (*)

» Reference operator (&) as already discussed, gives
the address of a variable.

* To get the value stored in the memory address, we
use the dereference operator (*).

* For Example: If a number variable is stored in the
memory address 0x123, and it contains a value 5.

* The reference (&) operator gives the value 0x123,

while the dereference (*) operator gives the value
5.

* Note: The (*) sign used in the declaration of C++
pointer is not the dereference pointer. It is just a
similar notation that creates a pointer.

Lecture Slides By Adil Aslam

Address Operator (&)

* The ‘&’ operator returns the ‘address of” its
operand.

e ‘&’ can be translated ‘address of’

andy = 25;
fred = andy;
ted = sandy;

andy
25l
1775 1776 1777

'e &N

fred ted

T

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 25/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Address of operator

0012FF88 -{ 8

ip i (@0012FF88)

int i 8;

int *ip;

&i;

ip

DMA(Dynamic Memory Allocation)

Dynamic Memory Allocation

malloc() realloc()

stdlib.h

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 26/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

calloc () T
malloc() =%
realloc() -

Uninitasired Static Variohles

free() mee

Text

new & delete C?Ei.,.

Low Address

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 27/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

DIFFERENCE BETWEEN MALLOC() AND CALLOC() FUNCTIONS IN C:

malloc()

calloc()

It allocates only single block
of requested memory

It allocates multiple blocks of
requested memory

int *ptr;ptr = malloc(20 *
sizeof(int));For the above,
20%/ bytes of memory only
allocated in one block.

Total = 80 bytes

int *ptr;Ptr = calloc(20, 20 *
sizeof(int));For the above, 20 blocks
of memory will be created and each
contains 20*4 bytes of memory.
Total = 1600 bytes

malloc () doesn’t initializes
the allocated memory. It
contains garbage values

calloc () initializes the allocated
memory to zero

type cast must be done since
this function returns void
pointer int *ptr;ptr =
(int*)malloc(sizeof(int)*20

)3

Same as malloc () function int
ptr;ptr = (int)calloc(20, 20 *
sizeof(int));

stack

heap

myArray

myQObj

- myArray [0]
myArray[1]
myArray [2]
myArray [3]
myArray [4]

> | MyClass object

double *myArray = new double[5]

MyClass *myQObj

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

new MyClass

1/23/23, 12:02 AM Memo_PL_Cplusplus

Memory Allocation
RAM
Automatic AT TR
X int global variable;
Stack F a”ocatlon static int static_variable;
void someFunction(int some_argument
y static int local_static_variable;
) int local_variable;
Stat".: g int *dynamic_ptr;
allocation
dynamic_ptr int*)malloc(
Heap Dynan_“c 14 free(dynamic_ptr);
allocation PSS
Static

Memory Leak

L‘lﬂ_ﬂ I L 100
Unaccessible
memory

r
Pointer {

Object

Stack

Heap

stack Heap

Object Created Object Destroyed

Heap vs Stack

(]ﬁwa(ys "
F r A
(stored in .)
‘. stack 7 / |Stack
Jint array[10]; = storedin-stack

rra
Uint * array = new int[n] _ YT

F .
« Pointer _array is stored in Sta(/:!{ Any chance to

- Data of array is stored in Heap, store_armayin _)
(heap? |5

\H__) _}\\H—- '/1.___-

3
g

Value of:
array : addmress where int “peint” inte in heap (0x00FF)
. [*_array): value at it's address on heap (10)
+ (&_array): address of the memory which used for stored pointer
_array - _amay in stack [0xD005)
0x0D0FF

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 29/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Heap

Text segment
| (Code segment)
Parameters

Retumn Address] | Data segment

where io begin execution
when function exits |

» Large pool of memory
» Dynamic allocation

» Stays allocated until
 specifically deallocated =

P | Stack frame
mﬁ‘.f’,’,?ﬂli,r!ﬁik | leak !
rame | /—‘
Staticlnk | | » Mgst be accessed through a
gt Sl pointer

|
Return value

Local variable Stack frame

“Concept” Stack frame | Heap Segment

» Large arrays, structures, or
classes should be stored
Heap = why?

» Large & dynamic

Text segment
(Code segment)
Parameters '
Retun Address | | Data segment

' 0Where parameters and

" e e ce. | local variables are
Dynamic link | Stack frame allocated
pointer fo caller's stack . . .
-] ¥ QO Limited size & Stack
ol overflow
(for nesied funcions) | . .
BT VA Kl 2 Memory use in stack is
Stack frame temporary and auto

Local variables

“Concept” Stack frame | Heap Segment

——

release
2 Fast processing/low size

Dynamic memory allocation (DMA)

Releasing space

manually

* The delete operator will
release a dynamically-
allocated space.

int* a = new int;
delete a; // release 4 bytes
int* b = new int[5];
delete b; // release only 4 bytes!
// Unpredictable results may happen
delete [] b; // release all 20 bytes

* The delete operator will
do nothing to the pointer.
To avoid reusing the
released space, set the

pointer to nullptr.

int* a = new int;

delete a; // a is still pointing to the address
a = nullptr; // now a points to nothing

int* b = new int[5];

delete [] b; // b is still pointing to the address
b = nullptr; // now b points to nothing

Programming Design ~ Pointers

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chich Kung (NTU IM)

30/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Dynamic memory allocation (DMA)

Good programming style

» Use DMA for arrays with no predetermined length.
— Even though Dev-C++ (and some other compilers) converts

int a = 10;
int a = 10; to int* b = new int[a];
int b[a]; I sis

delete [] b;

* To avoid memory leak:

— Whenever you write a new statement, add a delete statement below
immediately (unless you know you really do not need it).

— Whenever you want to change the value of a pointer, check whether
memory leak occurs.

— Whenever you write a delete statement, set the pointer to nullptr.

Programming Design - Pointers 59787 Ling-Chich Kung (NTU IM)

Multi-Dimesion Array

Pointers oand Multi-dimensional a rro.&q,s

R00 216 832
2|5z alz]4 Je[2]o]8 2|13
1§

imt c[37[2][2]
int (#.P[2L2]= €5 7 v
, cejle] <Loll4]
Frin £) //8o0
. Lo int 09 [23L. © ¢Jo] Cr4] clz]
Print *c o cle o £C[olfo] 4/ gop
L Sl) 8

v
ing Le)[2]
mycodeschool.com
int num[3](4] = { B ELASSROOM
{1, 2, 3, 4},
{5, 6, 7, 8},
{9, 1@, 11, 12}
b
row-wise memory allocation
“— oW @ —> — row 1 —>= — row 2 —>

value | 1 2 3 4 5 6 7 8 9 16 | 11 | 12

address | iees | ieez 1oad 1046 1868 1aig 612 1914 1nié 1aid 182 1822

T

first element of the array num

yeliniranen, ga

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 31/88

1/23/23, 12:02 AM

(Multidimension I k (Par
Multi-Dimensional (2-D)

What is Multi-Dimensional Array :

Memo_PL_Cplusplus

s) by Deenak (Pa

® An array having multiple rows or columns is known as multi-dimensional array.

o These are also known as array of arrays because array is present in another array.

® There are two types of multi-dimensional array :
1. 2-D Array
2. 3-D Array

® We can represent 2-D multi-dimensional array as follows :

Array pointing another array

Columns
0,0 0,1 0,2—]—Index Index
10 20 30 Positions 0 20 | 30 | Positens
OR *
o
g0 1,1 12 =
Elements
40 | 50 | 60|-femen N T e
- 40 50 60 in Array &2
21:44] 22:08 ordetalls

Dynamic memory allocation (DMA)

Let’s visualize the
memory events.
In general, the
space of the three
1-dim dynamic
arrays may be
separated.
However, the
space of the array
clements in each
array are
contiguous.

Example: lower triangular arrays

Address Identifier Value
int main() O20c644 r 3
{ % 0x20c648 Arzay 200654
int r = 3;
int** array = new int*[r] 0x20c650
for(int i = 0; i < r; i) -
(020654 N/A 0:20c6
array[i] = new int[i + 1)
. : " . 0x20c65c N 0200670
for(int j = 0; j <= 1i; j++) e .
array[i][§] = j + 1;
} Y10 2 B20c664 NA B0
print(array, r); // later e VA
// scme delete statements 200670 N/
return 0; [oxzocs7a | 2
} 0x20c678 NA 1 ®
=
C20cKTe N/A 2
Ox20cE80 N/A 3
Memory

Programining Design — Pointers

Ling-Chich Kung

(NTU IM)

Dynamic memory allocation (DMA)

Example: lower triangular arrays

To pass a two-dimensional dynamic array, just pass that pointer.

int main()

{

{

void print (int** arr, int r)

int r = 3;
int** array = new int*([r];
for(int i = 0; i < r; i++)
{
array[i] = new int[i + 1];
for(int j = 0; j <= i; jH)
array[i][3] = j + 1;
}
print (array, r);
// scme delete statements
return 0;

for(int i = 0; i < r; i)
{
for(int j =0; j <= 1i; j+)

cout << arr[i] [§] << " ";

cout << "\n";
}
}

Programming Design — Pointers

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

87 Ling-Chich Kung (NTU IM)

32/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Dynamic memory allocation (DMA)

Example: lower triangular arrays

* An alternative:

int main() void printlD(int* arr, int n)
{ {
int r = 3; for(int i = 0; i < n; iH)
int** array = new int*[r]; cout << arr[i] << " ";
for(int i = 0; i < r; i+) cout << "\n";
{ }
array[i] = new int[i + 1]; void print (int** arr, int r)
for(int j = 0; j <= i; j+) {
array[i][j] = J + 1; for(int i = 0; i < r; i)
} printlD(arx([i], i + 1);
print(array, r); }
// scme delete statements
return 0;

Programming Design — Pointers 72/87 Ling-Chich Kung (NTU IM)

Pointer Arithmetic

Introduction to C++

Pointer Arithmetic

* The C++ language allows you to perform integer addition or
subtraction operations on pointers.

If ptr points to an integer, ptr + 1 is the address of the next
integer in memory after ptr.

ptr - 1 is the address of the previous integer before ptr.

Note that ptr + 1 does not return the memory address after
ptr, but the memory address of the next object of the

type that ptr points to. If ptr points to an integer (assuming 4
bytes), ptr + 3 means 3 integers after ptr, which is 12 memory
addresses after ptr. If ptr points to a char, which is always 1
byte, ptr + 3 means 3 chars after ptr, which is 3 memory
addresses after ptr.

When calculating the result of a pointer arithmetic expression,
the compiler always multiplies the integer operand by the size
of the object being pointed to. This is called scaling.

Lecture Slides By Adil Aslam

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

33/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Pointer Arithmetic

*int *p, *q;
q=p + 1;
— Construct a pointer to the next integer after *p
and assign it to q
* double *p, *r;
ifE n;
r=p + n;
— Construct a pointer to a double that is n doubles
beyond *p, and assign it to r
- n may be negative

CS-2303, C-Term 2010 Arrays in C & C++ 35

Arrays and pointer arithmetic

Indexing and pointer arithmetic

* The array indexing operator [] is just an interface for doing pointer arithmetic.
— Interface: a (typically safer and easier) way ofcomplc.ling a task.
int x[3] = {1, 2, 3};
for(int i = 0; i < 3; i++)
cout << x[i] << " "; // x[i] = *(x + i)
for(int i = 0; i < 3; i)
cout << *(x +i) << " "; // 123

— x[i] and * (x + i) are identical, but using the former is safer and easier.
* The address stored in an array variable (e.g., x) cannot be modified.

int x[3] = {1, 2, 3};
for(int i = 0; i < 3; i+H)
cout << *(x++) << " "; // error!

Programming Design - Pointers 79787 Ling-Chich Kung (NTU IM)

Arrays and pointer arithmetic

Example 3: returning a pointer
t o)

#include <iostream>

§ . using namespace std;

negative number in an array. int* firstNeg(int a[], const int n) {

for(int i = 0; i < n; iH) {
if(a[i] < 0)

— We return its address. return &a[i];

} // what if a[i] >= 0 for all i?

* Recall that we want to find the first

— We want its value and index.

* Three issues remain. }
— Why not return its index? j('“" main()
— What if all elements in a are int a[5] = {0};
for(int i = 0; i < 5; i++)
eoative?
nonnq:all\u. cin®> a[i];
— Why not const int a[]? int* p = firstNeg(a, 5);
cout << *p << " " << p - a << "\n";
return 0; // what is p - a?
}
Programming Design - Pointers 83/87 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 34/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Arrays and pointer arithmetic

* To take the possibility of having no negati

using namespace std; {
int* firstNeg(int a[], const int n) {
for(int i = 0; i < n; i+) {
if (a[i] < 0)
return &a[i];

Example 3: returning a pointer

ve number into consideration:

#include <iostream> int main()

int a[5] = {0};

for(int i = 0; i < 5; i+H)
cin > a[i];

int* p = firstNeg(a, 5);

} if (p '= nullptr)
return nullptr; cout << *p << " " << p - a << "\n";
} return 0;
}
Programming Design - Pointers 84787 Ling-Chich Kung (NTU IM)

Arrays and pointer arithmetic

* Why not const int a[]?
— We return the address of a[i], which
— const int* and int* are different!

#include <iostream> ini
using namespace std;
int* firstNeg(int a[], const int n) {
for(int i = 0; i < n; i+) {
if(a[i] < 0)
return &a[i];

}
ret#n nullptr;
}
}

Example 3: returning a pointer

allows the caller to alter the element.

t main()

int a[5] = {0};
for(int i = 0; i < 5; i++)
cin > a[i];
int* p = firstNeg(a, 5);
if(p '= nullptr)
*p = -1 * *p; // *p at the LHS of =
return 0;

* One cannot modify the variable pointed by a constant pointer.

Programming Design - Pointers 85/8

Ling-Chich Kung (NTU IM)

Arrays and pointer arithmetic

— We should also return const int*.

#include <iostream>
using namespace std;
const int* firstNeg
(const int a[], const int n) {
for(int i = 0; i < n; iH) {
if(a[i] < 0)
return &af[i];

}

return nullptr;
}

Example 3: returning a pointer
* Touse const int a[], we need to change the return type.

— This is an int* that cannot be put at the LHS of an assignment operator.

int main()
{
int a[5] = {0};
for(int 1 = 0; i < 5; i+)
cin > a[il;
const int* p = firstNei(a, 5);
if(p !'= nullptr)
cout << *p << "\n"; // OK
return 0;

Programming Design - Pointers 86 /87

Ling-Chich Kung (NTU IM)

Main Function Arguments

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

35/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Command line arguments

argument count

array of string arguments

#include <s td% .h> /

int main(int arge, char *argv[]) {
}

argv[0] is the program name with full path
argv[1] is the first argument
argv[2] is the second argument, etc.

OOP

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

CLASSES
Data
Abstraction
Polymorphism ‘| Encapsulation
— Information
Inheritance Hiding

36/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Four Pillars of Object Oriented Programming.

e Inheritance: Process of creating new classes from existing classes.

e Abstraction: Refers to providing only essential information and hiding the
background details from the end user.

e Encapsulation: Binding together of data and functions that manipulate that
data and keep both safe from outside interference and misuse.

e Polymorphism: Refers to one interface and many forms.

524 L) BTE O
@
o o Recording: 0006:32 -

@pause W s Fov POa QW8
(]

$ =+ & T[16 -~ _.BIII HEE " undo
[e] — EENEEEE &

Data Abstraction

What is Data Abstraction?

® A data abstraction is a simplified view of
an object that
includes only features one is interested in.
while hides away the unnecessary details.
® |n programming languages, a data
abstraction becomes an abstract data
type (ADT) or a user-defined type.

\Oln OORP, it is implemented as a class /

Struct in C and Class in C**

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

37/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Geek

Built-in Data types User defined types
Void Structure
Integral type Union
Floating type —
Enumeration

Structure Types
(Using typedef)

typedef struct car { Old Type
char engine[50];
char fuel_type[10];
int fuel_tank_cap;

int seating_cap;
float city mileage; car becomes a new data type. |

Jear; «——— New Type

int main() {
struct car ci;

C Programming

Structure |

Structures within Structures

1. C define a variable of structure type as a member of other
structure type.
2. The syntax to define the structure within structure is
struct <struct_name>{
<data_type> <variable _name>;
struct <struct_name>
{ <data_type> <variable_name>;
vere.y<struct_variable>;
<data_type=> <variable_name>;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 38/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Useof structinC

address data offset
Offsets
instantiated aa On a 32-bit architecture (32-bit ‘int's):
bb
saa =0
pointer —~,_ p_record ebb = 4
e p_record = 8
e as defined by typedef. Code
pointer ??7?
\ typedef struct record_t
| {

/' int aa;
N int hb;

struct record_t *p_record;

— } record;
record instantiated;
?77? aa ¢ record *pointer;
bb I
NULL p_record

pointer = malloc(sizeof(record));
pointer->p_record = NULL;
instantiated.p_record = pointer;

"Heap”
(malloc area)

#include <iostream>
using namespace std;

struct MyVector {
int n;
int* m;
void init(int dim);
void print();

s

void MyVector::init(int dim){
n = dim;
m = new int[n];

for(int i = 9; i < n; i++){
m[i] = 0;

void MyVector::print(){
cout << "(";
for(int i = 9; i < n-1; i++){

cout << m[i] << ", ";

}

cout << m[n-1] << ")" << endl;

int main(){
cout << "Welcome to Learning C++ Data Structure and Algorithm" << endl;
cout << "Topic: OOP - Class" << endl << endl;

MyVector v;
v.init(3);
v.m[@] = 3;
v.print();
delete [] v.m;

return 0;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 39/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

ClassinC*?

class myClass {

public:
int myNum;
private: Data and Access
string mystr; Modifiers
protected:

float myFloat;
public:

myClass() {

¥ Constructors
myClass(int x, string y){
) ces

private:
void myMethodOne() {

Y Methods

protected:
void myMethodTwo() {

}
I

Access Modifiers are used
to assign the accessibility
to the class members.

A constructor is a member
function which initialises
objects of a class.

Methods are functions
that perform operations
on the class data.

enjoyalgorithms.com

class GFG {

public:

public:
func()
{

hH
s

Types of variables in C++

Static Variable
Instance Variable

Local Variable

#include<iostream>
using namespace std;
class student

!

private :

char name[20];

e }— Data Members

public :
int a;
Void getdata(void);
Void display (void)
{

}

cout << 1id <<‘\t” << name << endl;

|

et

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Member
Funcgions

40/88

1/23/23, 12:02 AM

keyword

e

class classname

Memo_PL_Cplusplus

classname

{

Access specifiers: _

Data members/variables:

Member functions () {}

__f/private/public/protected

r'll.flr"”.’il.il.l_l'g_n_.

S/ methods

Jend of class with o semicolon

Structure

Class

Itis a value type.

Itis a reference type.

Its object is created on the
stack memory.

Its object is created on the
heap memory.

It does not support
inheritance.

It supports inheritance.

The member variable of
structure cannot be initialized
directly.

The member variable of
class can be initialized
directly.

It can have only parameterized
constructor.

It can have all the types of
constructor and destructor.

Struct vs Class

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

41/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Structure Class

Itis a value type. Itis a reference type.

Its object is created on the Its object is created on the

stack memory. heap memory.

It does not support It supports inheritance.

inheritance.

The member variable of The member variable of

structure cannot be initialized |class can be initialized

directly. directly.

It can have only parameterized |It can have all the types of

constructor. constructor and destructor.
Encapsulation

Access Control

» We use the private section of the struct to encapsulate our
data type as in our ADTs in C

» But if the struct is defined in the header file, doesn't this
break encapsulation?
+ No! Encapsulation is not about hiding information from the user,
it's about ensuring that he uses our ADT in a safe way, which we
achieve by enabling him to use only its public interface

» However, unlike ADTs in C style, we do not get
compile-time encapsulation

+ In other words, changing the private part of a struct will require
recompiling files that use the ADT

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

42/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Encapsulation

* Encapsulation is the packing of data and
functions into a single component. The features
of encapsulation are supported using classes in
most object-oriented programming languages,
although other alternatives also exist.

* Encapsulation is:

— A language mechanism for restricting access to some
of the object's components. (public, private,
protected)

— A language construct that facilitates the bundling of

data with the methods (or other functions) operating
on that data.

4 Accessible to
e Cutside world

class

Mot accessible

private data outside

Visibility in Class

Basic concepts Constructors and

Friends and static member

Visibility

Object pointers and the cop:

* We can/must set visibility of members in a class:
— Public members can be accessed anywhere.
— Private members can be accessed only in the class.
-/ Protected members will be discussed later in fhi§ semester.
* These three keywords are the visibility modifiers.
* By default, all members’ visibility level is private.
— That is Why@. init(5) generates a compilation error; init() is private
and cannot be invoked outside the class (e.g., in the main function).
dosihdec s gl
* By setting visibility, we can hide/open our instance members.
— Usually all instance variables are private.
— Let’s see how to do this.

Programming Design — Classes 9/52 Ling-Chieh Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 43/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Basic concepts Constructors and the destructor

Encapsulation

. Thg/zoncepts of packaging (grouping member variables and member functions)
and’data hiding together form the concept of “encapsulation”.
— Roughly speaking, we pack data (member variables) into a black box and
provide only controlled interfaces (member functions) for others to access
these data.

— Others should not even know how those interfaces are implemented.

¢ For OOP, there are three main characteristics/functionalities:

—VEncapsulation.

— Inheritance.

— Polymorphism.
¢ The last two will be discussed later in tbé semester.

IQJ(QW

Programming Design - Classes 13/52 Ling-Chich Kung (NTU IM)

Class Constructor and Deconstructor

(11.14)

E'?'i Data Abstraction in C++ (continued)

» Constructors
- functions to initialize the data members of instances

may also allocate storage if part of the object is heap-
dynamic

can include parameters to provide parameterization of the
objects

- implicitly called when an instance is created
» can be explicitly called
- name is the same as the class name
» Destructors

- functions to cleanup after an instance is destroyed; usually
just to reclaim heap storage

implicitly called when the object's lifetime ends
can be explicitly called
name is the class name, preceded by a tilda (~)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 44/38

1/23/23, 12:02 AM Memo_PL_Cplusplus

Class Constructors

A class constructor is a member function whose purpose is to
initialize the private data members of a class object

* The name of a constructor is always the name of the class,
and there is no return type for the constructor

* Aclass may have several constructors with different
parameter lists. A constructor with no parameters is the
default constructor

* A constructor is implicitly and automaticly invoked when a
class object is declared--if there are parameters, their values
are listed in parentheses in the declaration

Object-oriented programming - [ITU 3

Destructor in C++

Destructor

If we do not create our

Deallocates references | awn destructar,

and memory of object |
Members l Compiler creates its

To destroy the abject

awn default destructor

Constructors are a unigque class functions that do the job of destreying

the instances of class.

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

45/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Constructors and the destructor

d static members

Dbject pointers and the copy constructor

default constructor.

If, and only if, a programmer does not define

Constructors

A constructor’s name is the same as the class.
It does not return anything, not even void
You can (and usually will) overload them.

The constructor with no parameter is the

any constructor, the compiler makes a
default one which does nothing.

class MyVector
{
private:

int n;

int* m;

ic:

// constructors
MyVector (int dim) ;
MyVector (int dim, int value);
void print() ;

};

A constructor may be private.

— Be invoked only by other constructors.

Programming Design — Classes 19/52

Ling-Chieh Kung (NTU IM)

Constructors and the destructor

nd static members

Object pointers and the copy constructor

7
Destructors

A destructor 'is inlvoked right [s myvector
before an object is destroyed. | {
— It musgbe public and pr::w:te’
ant n;
have'no parameter. int* m;

— The compiler provides a | public:

default destructor that -
. ~MyVector () ;
does nothing. i;

To define your own MyVector: :
destructor, ug . ~MyVector ()
— Typically we release delete [] m;

dynamically allocated }

MyVector: :MyVector
(int dim, int value)
{
n = dim;
m = new int[n];
for(int i = 0; i < n; i++)
m[i] = value;
}

int main()
{
if (true)
MyVector vl (1) ;
// no memory leak

space in a destructor.

return 0;
}

Programming Design - Classes 22/52

#include <iostream>
using namespace std;

class MyVector {
private:

int n;

int* m;
public:

MyVector();

MyVector(int dim, int value = 0);

~MyVector();
void print();
}s

MyVector: :MyVector(){

n = 0;
m = nullptr;

MyVector: :MyVector(int dim, int value){

n = dim;
m = new int[n];

for(int i =0; i < n; i++){
m[i] = value;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chich Kung (NTU IM)

46/88

1/23/23, 12:02 AM

MyVector: :~MyVector(){

delete [] m;

void MyVector: :print(){

int

cout << "(";
for(int i = 9; i < n-1; i++){

cout << m[i] << ", ";

}

cout << m[n-1] << ")" << endl;

main(){

cout << "Welcome to Learning C++ Data Structure and Algorithm" << endl;

Memo_PL_Cplusplus

cout << "Topic: OOP - Class" << endl << endl;

MyVector v1(1);
MyVector v2(3, 8);

vl.print();
v2.print();

return 0;

#include <iostream>
using namespace std;

class A {
public:

g

A() { cout << "A\n"; }
~A() { cout << "~A\n"; }

class B {
private:

A a;

public:

}s

B() { cout << "B\n"; }
~B() { cout << "~B\n"; }

int main(){

B b;

return 0;

Getter and Setter

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

47/88

1/23/23, 12:02 AM Memo_PL_Cplusplus
Getters and Selters
-
inC++

// Gellers // Sellers

getHeight() setHeight(in ! h)

i {
velurn height: height = h:
| i

Static Member

Friends and static members

Static members

* Aclass contains some instance variables and functions.
— Each object has its own copy of instance variables and functions.
* A member variable/function may be an attribute/operation of a class.

— When the attribute/operation is class-specific rather than object-specific.
— A class-specific attribute/operation should be identical for all objects.

¢ These variables/functions are called static members.

Programming Design — Classes 29/52 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 48/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Friends and static members Object pointers and the copy cor

Static members: an example

¢ In MS Windows, each window is class Window

an object. .
T .) . private: o
— Windows is written in C++. int width;
— Mac OS is written in ““: ;Elgl:;;nx —
. o ani oca’ 7 '
Objective-C. int location¥s
* Each window has some object- int status; // 0: min, 1: usual, 2: max
specific attributes. j;"uc int barColor; // 0: gray, ...
* They also share one class-specific | public:
attribute: the color of their title static int getBarColor() ;
bars static void setBarColor (int color) ;
e V(I
};
Programming Design — Classes 30/52 Ling-Chich Kung (NTU IM)

nds and static members Object pc

Static members: an example
v

¢ We have to initialize a static * To access static members, use
variable_globally. class name@nember name.
@wmdow; :parColor(= o> // default int main()
L {
int(Wi ¢ :getBarColor () Window w; // not used
{ cout << Window: :getBarColor() ;
return barColor; cout << "\n";
} Window: : setBarColor (1) ;
return 0;
void Window: : setBarColor (int color) }
{
barColor = color;
}
Programming Design — Classes 31/52 Ling-Chich Kung (NTU IM)

Friends and static members Object p

Good programming style

« If one attribute should be identical for all objects, it should be declared as a
static variable.

— Do not make it an instance variable and try to maintain_consistency.
* Do not use an object to invoke a static member.

— This will confuse the reader.
¢ Use class nm@e@er name even inside member function definition
member function de

to shoW tHat it is a static member.

int Window: :getBarColor ()
{
return Window: :barColor;

}

Programming Design — Classes 33/52 Ling-Chich Kung (NTU IM)

Object Pointer

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

49/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

(

Object pointers and the copy constructor

Object pointers

— *ptrAreturns the object a.
* To simplify this, C++ offers the member access
operato:
— This is specifically for an object pointer to access
its members.
— (*ptrd) .print() is equivalent to
ptrA->print().

* What we have done is to use an object to invoke instance functions.
— E.g., a.print () where ais an object and print () is an instance function.

* If we have a pointer ptxA pointing to the object a, we may write
(*ptra) .print() to invoke the instance function print().

int main()

{

MyVector v(5) ;
MyVector* ptrV = &v;
v.print() ;
ptzV->print () ;
return 0;

Programming Design — Classes 38/52

Ling-Chich Kung (NTU IM)

(

Object pointers and the copy constructor

invoked.

Why object pomters?w
* Object pointers can be more useful than pointersfor basic data types. Why?

* When one creates an array of objects, only the’default constru may be

— Creating an array of object pointers delays the invocation of constructors.

4

—_A pointer can be much smaller than an object.
— Copying a pointer is easier than copying an object.

¢ Other reasons will be discussed in other lectures.

These pointers than point to dynamically allocated objects.
assing a pointer into a function can be more efficient than passing the object.

Programming Design — Classes 39/52

Ling-Chich Kung (NTU IM)

(ctors

Object pointers and the copy constructor

{

int n = vl->getN() ;
int* sov = new int[n];
for(int i = 0; i < n; i++)

MyVector sumOfVec(n, sov) ;
return sumOfVec;
}

// assume that their dimensions are identical

Passing object pointers into a function

* We may pass pointers rather than objects into this function:

MyVector sum(MyVector* vl, MyVector* v2, MyVector* v3)

sov[i] = vli->getM(i) + v2->getM(i) + v3->getM(i);

— We need to create only one MyVector object in this function.
— Nevertheless, using pointers to access members requires more time.

Programming Design — Classes 44/52

Copy Constructor

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chich Kung (NTU IM)

50/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

(

Object pointers and the copy constructor

Copying an object

» Creating an object by “copying” an object is a special operation.

— When we pass an object into a function using the

call-by-value mechanism.

— When we assign an object to another object. Aad=al;
— When we create an object with another object as the
argument of the constructor. :

* When this happens, the copy constructor will be invoked.

— If the programmer does not define one,

the compiler adds a default copy

constructor (which of course does not print out anything) into the class.

— The default copy constructor simply copies all member variables one by one,

regardless of the variable types.

Programming Design - Classes 49/52

Ling-Chich Kung (NTU IM)

(

Object pointers and the copy constructor

Copy constructors

* We may implement our own copy constructor.

— In the C++ standard, the parameter must be a constant reference.

— If calling by value, it will invoke itself infinitely many times.

class A

{

private:
int i;

public:
A() { cout << "A"; }
A(constﬁ a) { cout << "a"; }

void £(A al, A a2, A a3)

aZz, a3; // AAA

}; cout "\n==\n";
£(al) a2, a3); // asan
return 0;
}
Programming Design — Classes 50/52 Ling-Chich Kung (NTU IM)

(ctors anc

Object pointers and the copy constructor

Copy constructors for MyVector

* For MyVector, one way to implement a
copy constructor is
— This has nothing different from the
default copy constructor.
— If no member is an array/pointer,
the default copy constructor is fine.
* Ifthere is any array or pointer member

variable, the default copy constructor does

“shallow copy”.
e ———
— And two different vectors may share
two duiierent vectors
the same space ft

— Modifying one vector affects the other!
Vi

v

MyVector: :MyVector
(const MyVector& v)
{

n =v.n;

@= v.m;
}

int main()
{

MyVector v1(5, 1) ;

MyVector (vl) ; // what is bad?
} E/

Programming Design — Classes 51/52

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chieh Kung (NTU IM)

51/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

(

Object pointers and the copy constructor

Deep cop

* To correctly copy a vector (by creating new values), we need to write our own
copy constructor.

* We say that we implement “deep copy” by ourselves.

— In the self-defined copy constructor, we manually create another dynamic
array, set its elements’ values according to the original array, and use mto
record its address.

MyVector: :MyVector (const DEVM
{
n =v.n;
m = new int[n]; // deep copy
for(int i = 0; i < n; i++)
m[i] = v.m[i];

}

Member Initilizers

Programming Design - Classes 52/52 Ling-Chich Kung (NTU IM)

Motivations and prercquisites I

* We need a member

* "Member initializers are

Member initializers

MyVector: :MyVector() : n(0) ——

initializer. m = mullptr;
VA specific operation for }
initializing an instance MyVector: : MyVector(int dim, int v[]) : n(dim)
. {
variable. for(int i = 0; i < n; i+)
— Can also be used for m[i] = v[i];
initializing non- }
constant inm MyVector: : MyVector (const MyVector& v) : n(v.n)
variables.

{
(m = new double[n] ;
for(int i = 0; i < n; i++)

used a lot in general. mldl =il

Friend

Programming Design — Operator Overloading 17/49

Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

52/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

private:
int a;
friend class Second

class First

private:
int b;
public:
void get_sum(First obj1) {

sum = objl.a +b;

} $

class Second

o

Friend function characterstics

® [tis notin scope of class.

® [t cannot be called using object of that class.

® [t can be invoked like a normal function.

® [t should use a dot operator for accessing members,
® It can be public or private.

® [t has (}bjects as 3rguments.

® Perhaps the most common use of friend functions is
overloading << and >>for /0,

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

53/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Friends and static members Object pc

friend for functions and classes

* Declare friends only if data hiding is preserved.
— Do not set everything public!
— Use structures rather than classes when nothing should be private (this is
recommended but not required).
— Be careful in offering public member functions (e.g., getters and setters).
* friendin fact help you hide data.
— Ifa private member should be accessed only by another class/function, we
should declare a friend instead of writing a getter/setter.

Programming Design - Classes 28/52 Ling-Chich Kung (NTU IM)

Friends and static members

friend for functions and classes

* To “open” private members, another way is to declare “friends.”

* One class can allow its Inc/nd_s to access its private members.

« Tts friends can be global functions or other classes. class MyVector v

— Then inside test () and member functions of Test, | { -
those private members of MyVector can be accessed.

W e
friend void test();
— MyVector cannot access Test’s members. friend class Test;

i

Programming Design - Classes 26752 Ling-Chich Kung (NTU IM)

#include <iostream>
#include <cstdlib>
using namespace std;

class MyVector {
private:
int n;
double* m;
public:
MyVector();
MyVector(int dim, double v[]);
MyVector(const MyVector& v); //Deep Copy
~MyVector();
void print() const;
bool operator== (const MyVector& v) const;
bool operator!= (const MyVector& v) const;
double operator[] (int i) const;
double& operator[] (int i);
MyVector& operator= (const MyVector& v);
const MyVector& operator+= (const MyVector& v);
const MyVector operator+ (const MyVector& v);
const MyVector operator+ (double d);
friend const MyVector operator+ (const MyVector& v, double d);

%

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 54/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus
MyVector: :MyVector() : n(9), m(nullptr) {
}

MyVector: :MyVector(int dim, double v[]) : n(dim){
m = new double[n];
for(int i =0; i < n; i++){
mfi] = v[i];
}
}

//Deep Copy
MyVector: :MyVector(const MyVector& v): n(v.n){
m = new double[n];
for(int i = 0; i < n; i++){
m[i] = v.m[i];

}

MyVector: :~MyVector(){
delete [] m;
}

void MyVector::print() const {
cout << "(";
for(int i = 0; i < n - 1; i++){

cout << m[i] << ", ";

}
cout << m[n - 1] << ")";
}
bool MyVector::operator== (const MyVector& v) const {
if(n != v.n)
return false;
else {

for(int 1 = 0; i < n; i++){
if(m[i] !'= v.m[i])
return false;

}

return true;

}

bool MyVector::operator!= (const MyVector& v) const {
return (*this == v);

}

double MyVector::operator[] (int i) const {
if (i <0 || i >=n){
exit(1l); //terminate the program! required <cstdlib>
}

return m[i];

}

double& MyVector::operator[] (int i){
if (i <0 || i >= n){
exit(1);
}

return m[i];

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

55/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

MyVector& MyVector::operator= (const MyVector& v){
if(this != &v){

if(this->n != v.n){

delete [] this->m;

this->n = v.n;

this->m = new double[this->n];
}

for(int 1 = 0; i < n; i++){
this->m[i] = v.m[i];

}

return *this;

const MyVector& MyVector::operator+= (const MyVector& v){
if(this->n == v.n){
for(int i = 9; i < n; i++){
this->m[i] += v.m[i];

}

return *this;

const MyVector MyVector::operator+ (const MyVector& v){
MyVector sum(*this); //MyVector(const MyVector& v)
sum += v;
return sum;

const MyVector MyVector: :operator+ (double d){
MyVector sum(*this);
for(int i = 9; i < n; i++){
sum[i] += d;
}

return sum;

const MyVector operator+ (const MyVector& v, double d){
MyVector sum(v);
for(int i = 0; i < v.n; i++){
sum[i] += d;
}

return sum;

const MyVector operator+ (double d, const MyVector& v){
return v + d;

const MyVector operator+ (const MyVector& vl, const MyVector& v2){
MyVector sum(vl);
sum += v2;
return sum;

int main(){
cout << "Welcome to Learning C++ Data Structure and Algorithm" << endl;
cout << "Topic: OOP - Class" << endl << endl;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 56/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

double di[5] = {1, 2, 3, 4, 5};
MyVector al(5, dl);

double d2[4] = {1, 2, 3, 4};
MyVector a2(4, d2);

MyVector a3(al);

cout << (al == (a2) ? "Y" : "N");
cout << endl;
cout << (al == (a3) ? "Y" : "N");

cout << endl;

cout << "al[3]: "<< al[3] << endl;
al[1] = 999;

cout << "al[l]: " << al[l] <<endl;
cout << "al: ";
al.print();
cout << endl;

cout << "a2: ";
a2.print();
cout << endl;
cout << "a3: ";
a3.print();
cout << endl;

al += a3;

cout << "al + a3: ";
al.print();

cout << endl;

al = al + 4.2;

cout << "al + 4.2: ",
al.print();

cout << endl;

a2 = 100+ a2;
cout << "100 + a2: ";
a2.print();

cout << endl;

return 0;

Inheritance

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 57/88

1/23/23, 12:02 AM

single Inheritance

Multiple Inhertance

Memo_PL_Cplusplus

MultiLevel Inheritance

Base Class

Base Class 1

Base Class 2

Base Class

Derived Class

hierarchial Inheritance

Base Class

| Ui

Derived Class

Derived Class 1

Derived Class 2

Hybrid Inheritance

Base Class

Derived Class 1

Derived Class 1

Derived Class 2

Derived Class 3

Base-class
member-
access
specifier

public

protected

private

public
inhenitance:

public in derved class

Can be accessed darecthy
by member functions,
friend functions and
nonmember functions.

protected in denved cazs

Can be accessed directly
by member functions and
friend functions

Hidden in desived class.

Can be accessed by member

functicns and friend
functicns through public
of protected member
functions of the base class.

Inheritance

De|

Type of inhentance

protected
inherntance

protected in denved class

Can be acoessed directly
by member funchions and
friend functions

protected in denved class

Can be accessed directly
by member functions and
firiend functions

Hidden in derived class.

Can be accessed by member
functions and friend
functions through public
o protected member
functions of the base dass.

Derived Class 3

rived Class 2

private
inheritance

private in derived class

Can be accessed directly
by memiber functions and
friend functions,

private in derived class,

Can be accessed directly
by member functions and
friend functions

Hidden in derived class,

Can be accessed by member
functicns and friend
functions through public
or protectad membser
fumctions of the base class.

Inheritance visibility

* In general, the visibility of a member in a child class depends on:

— The member visibility b arent.

— The inheritance modifier.

Member visibility Inheritance modifier
by the parent. public protected | private
\% public public protected private
protected protected | protected private
private private private private

» If you have no idea, just use public inheritance.

Programming Design — Inheritance and Polymorphism

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

26/62

Ling-Chich Kung (NTU IM)

58/88

1/23/23, 12:02 AM

Inheritance An exa

Memo_PL_Cplusplus

Invoking parent class’ constructors

* The parent class’ constructor will not be inherited.
* One of them will be invoked before the_child class’ constructor is invoked.
Create the parent before creating the child!

f not specified, the parent’s default constructor will/be invoked.
1L not speciticd

Inheritance

\
MyVector: :MyVector() : n(0), m(nullptr) i/nt main ()
{ {
} MyVector2D v;
MyVector2D: :MyVector2D () Q return 0;
{ }
this->n = 2;
// this->m = nullptr is redundant
}
Programming Design — Inheritance and Polymorphism 8/62

An examp

Ling-Chich Kung (NTU IM)

ymorphi

Invoking copy constructors

* How about the copy constructor?
* If we do not define one for the child,
Jhe we
Before the child’s default copy
constructor is invoked, the

parent’s.copy constructor will be
automatically invoked.

MyVector: :MyVector (const MyVector& v)
{

this->n = v.n;

this->m = new double[n] ;

for(int i = 0; i < n; i++)

this->m[i] = v.m[i];

}
class MyVector2D : public MyVector
{
public:

MyVector2D() ;

MyVector2D (double m[]) ;

// no copy constructor
};

Programming Design — Inheritance and Polymorphism 10/62

Inheritance

Ling-Chich Kung (NTU IM)

Invoking parent class’

When an object of the child class is to
be destroyed:
— First the child’s destructor is invoked.
— Then the parent’s destructor is
invoked automatically, even if we do
not define a destructor for the child.

destructor

MyVector: : ~MyVector ()
{
delete [] m;
}
class MyVector2D : public MyVector

public:
MyVector2D() ;
MyVector2D (double m[]) ;
// no destructor

b

Programming Design — Inheritance and Polymorphism 14/62

Overriding vs Overloadi

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Ling-Chich Kung (NTU IM)

ng

59/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Function Overriding

Parent Shape

N

variable

Print()

1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
: has
1
1
1
1
1
1
1
1
1
1
1
4

Child Triangle

cide Overridden

print() - -

Function signature and Parameters

= Function signature is the combination of the
function name and the parameter list.

= Variables defined in the function header are known
as formal parameters.

= When a function is invoked, you pass a value to the
parameter. This value is referred to as actual
parameter or argument.

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 60/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Called Function

Caller

Overloading in C++

JWhat is overloading
— Overloading means assigning multiple
meanings to a function name or operator
symbol
— It allows multiple definitions of a function with the same
name, but different signatures.
Uc++ supports
— Function overloading

= Opcrat()r ()vcrluading

° Ritika sharma
NS /

Overloading and Overriding in C++

Base Class int add(int, int);
int add(int, int);
int add(int, int, int);
double add(double, double);

Derived Class |int add(int, int);

Function
Overriding

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 61/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Overloading vs. Overriding

* Overriding a base class member function is
similar to overloading a function or operator

— But for overriding, definitions are distinguished by
their scopes rather than by their signatures

* C++ can distinguish method definitions
according to either static or dynamic type
— Depends on whether a method is virtual or not

— Depends on whether called via a reference or
pointer vs. directly on an object

— Depends on whether the call states the scope
explicitly (e.g., Foo: :baz () ;)

CSE 332: C++ Overloading

Polymorphism

Overview of C++ Polymorphism

* Two main kinds of types in C++: native and user-defined
- “User” defined types: declared classes, structs, unions
* including types provided by the C++ standard libraries
— Native types are "built in” to the C++ language itself: int, long, float, ...
— Atypedef creates a new type name for ancther type (type aliasing)

* Public inheritance creates sub-types
— Inheritance only applies to user-defined classes (and structs)
— A publicly derived class is-a subtype of its base class
— Known as “inheritance polymorphism”

* Template parameters also induce a subtype relation
— Known as “interface polymorphism”
— We’'ll cover how this works in depth, in later sessions

* Liskov Substitution Principle (for both kinds of polymorphism)
— if S is asubtype of T, then wherever youneed a T you canuse an S

CSE 332: C++ Polymorphism

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 62/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

O Prepinsta Polymorphism in
C++
/ Polymorphism \‘
Compile Run
Time Time
Function Operator Function
Overloading Overloading Overriding

Above is achieved

using virtual keyword

Early Binding and Late Binding

What is Binding ?

* Binding refers to the process that is used to
identifiers (such- as variable and
function names) into machine = language
addresses.

convert

* Although binding is used for both variables

and functions, but we have to focus on
function binding.

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

63/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Early binding
&

. Late binding in C++
Typesof
/ Binding \

Early Binding Late Binding
Operator | Fun_ﬂiull Fum'tin: 1 Virtual
Overloding Overloding Overriding Functions

Sr. No. Early Binding Late Binding

Early binding is the process of linking
a function with an object during the
compilation process.

Late binding i3 a run-time polymorphism
with method overriding.

Static kinding is another name for
early binding.

Dynamic binding is another name for
late binding.

3

Early binding happens at compile
time,

Late binding happens at run time,

Execution speed is faster in early
binding.

Execution speed is lower in [ate binding.

5!

The class information is used by Early
binding to rescive method calls.

The object is used by Late binding to
resolve method calls.

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

64/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Late binding for the Print() method

Early binding {(defined by virtual, override words)

class A class A
print() { ... " virtual Print() { ...)
2 v,
¥ i
o Virtual 7 T
method T
class B : A designation ~__ class B :
I
Print() { ... } 'ho\.rel‘ride Print() { ... }=
})
A refa; o A refa;
B objB = new B(); B objB = new B();
refA = objB; refA = objB;
refA.Print(); » refa.Print();
A
’
! T
! Binding refA to Binding refA to type | The Print{) method is virtual, so it's implemented
The refA reference is associated with type A type A B. which J_‘a" snohjR “late binding” based oo the sting
(base class type). Call A.Print() object refA = objB;

The refA reference is associated with type B, The
B Print() is called

le Polymarphism

Early binding vs. late binding

* WhenwedoA a = borA* a = &b weare c(‘.l-'sSS a
using r’olmﬁhism W

&

* Foraa= (6, he system does early binding: int i;
— aoccupies only four bytes for storing i Y
aoccupies only four bytes for storing i. void a() { cout << "a\n"; }
— adoes not have a space for storing 3j. void £() { cout << "af\n";)

b

— Its type is set to be Aat compilation. class B : public A

-~

* ForA* a = &b, the system does late binding:
e —— —_—

el . private: x|
— ais just a pointer. int 3; U /\
— It can point to an A object or a B object. public:

wvoid b() cout << "b\n"; }
void £() { cout << "bf\n"; }
}i

— Its “type” can be set at the run time.

Programming Design— Inlieritanec aod Polymorplism 54/62 Ling-Chich Kung (NTU [M)

Virtual Function

Polymorphism

Virtual functions

* If we declare a parent’s class Parent
member function to be {
irtual. its invocati protected:
v ||. lu'a s ll? mvocation int x;
priority will be lower than a int y;
child’s (if we use late public:
binding). Parent (int a, int b) : x(a), y®) {}
. virtual void print() { cout <K x << " " K< y; }
— Achild cannot declare a | ;
parent’s function as Class Child : public Parent
virtual (it is of no use). {
T e —— protected:
* In summary, we need: int z;
— Late binding + virtual public: . .
. . Child(int a, int b, int ¢) : Parent(a, b)
functions. (zme}
void print() { cout << z; }
};
g Design — Ink and Poly ph 57/62 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 65/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Polymorphism

Abstract classes

* The pwo virtual functions are different in their natures:
c/;;im//) is invoked in the children’s implementations.
tMonster () should not be invoked by any one.
We may set beatMonster () to be a pure virtual Iun(uon.‘

?aSSJW \

v:Lrtual ' roid M@

- N/ow we do not need to implement it.
— Moreover, we cannot create Character objects!

Prog ¢ Design - Int and Poly

59762 Ling-Chich Kung (NTU IM)

Polymorphism

Summary

more powerful.—

— It is based on inheritance.

functions.
functions

Polymorphism is a technique to make our program clearer, more flexible and

— Itis tightly related to function overriding, lm - binding, and virtual

* The key action is to “use a parent pointer to point to a child object”.

¢ Design - Int and Polymorp 62

62 Ling-Chich Kung (NTU IM)

Virtual Functions

class A { .
public:
A () {cout<<" A";}
virtual ~A () {cout<<" ~A";} ¢
virtual f(int);

};

L]

class B : public A {
public:
B () :A() {cout<<" B";}
virtual ~B() {cout<<" ~B";}
virtual f(int) override; //C++1.1
Y

int main (int, char *[]) {
// prints "A B"
A *ap = new B; .
// prints "~B ~A" : would only
// print "~A" if non-virtual
delete ap; .

return 0;

Used to support polymorphism
with pointers and references

Declared virtual in a base class

Can override in derived class

— Qverriding only happens when
signatures are the same

— Otherwise it just overloads the
function or operator name
+ More about overloading next lecture

Ensures derived class function
definition is resolved dynamically

— E.g., that destructors farther down
the hierarchy get called

Use £inal (C++11) to prevent
overriding of a virtual method
Use override (C++11) in
derived class to ensure that the

CSE 332: C++ Polymorphism

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

signatures match (error if not)

66/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Virtual Functions

class A {
public: » Only matter with pointer or reference
void x() {cout<<"A::x";}; — Calls on object itself resolved statically

virtual void y() {cout<<"A::y";}, _ Eg.b.y();
Lt » Look first at pointer/reference type
class B : public A { - If non-virtual there, resolve statically
public: * E.g.,ap->x();
void x() {cout<<"B::x";}; — If virtual there, resolve dynamically
virtual void y() {cout<<"B::y";}; « E.g., ap->y():
bi + Note that virtual keyword need not be

repeated in derived classes

Ant waln (] { - Butit's good style to do so

B b; ; 3

A *ap = &b; B *bp = &b; + Caller can force static resolution of a
b.x (); // prints "B::x" virtual function via scope operator
b.y (); // prints "B::y" — E.g., ap->A::y() ; prints “A::y”

bp->x (); // prints "B::x"
bp->y ():; // prints "B::y"
ap->x (); // prints "A::x"
ap->y (): // prints "B::y"
return 0;

}i
CSE 332: C++ Polymorphism

this

Motivations and prerequisites Comparisona

Assignment and self-as

\/ .
this
. . class A
* When you create an object, it {
occupies a memory space. private:
int a;
MyVector al public:
- void £() { cout << this << "\n"; }
antans A% g() { return this; }
dowlerm H—[1[2[3]a[s] |};
int main()
. . . A {
. .IHSIde an ms,tanne_ﬁmcnm this A ob3;
is a pointer storing the address of cout << &abj << "\n"; // 0x9£fed0
that object. obj.£(); // 0x9ffed0
A cout << (&obj = obj.g()) << "\n"; // 1
= +
this is a C++ keyword. . 0;
}
Programming Design ~ Operator Overloading 10/49 Ling-Chich Kung (NTU IM)

Constant Object

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

67/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Motivations and prerequisites ¢ parison and indexing ope

Constant objects

* A constant object cannot invoke a function class MyVector
that modifies its instance variables. {
‘ . private:
— In C++, funct'lons that may be invoked by int n
a constant object must be declared as a int* m;
constant instance function. public:
. . S MyVector() ;
For a constant instance function: MyVector (int dim, int v[]);
— It can be called by non-constant objects. MyVector (const MyVectors v) ;
~MyVector () ;

— It cannot modify any instance variable. void print() const;

» For a non-constant instance function: };

— It cannot be called by constant objects
even if no instance variable is modified.

Programming Design Operator Overloading 15/49 Ling-Chich Kung (NTU IM)

Member Initilizers

Motivations and prercquisites Comparison and index

Member initializers

* We need a member MyVector: :MyVector() : n(0) ———
ll]lf/]dlll(l. m = mullptr;
-V A specific operation for }
initializing an instance MyVector: : MyVector(int dim, int v[]) : n(dim)
. {
variable. for(int i = 0; i < n; i+)
— Can also be used for m[i] = v[il;
initializing non- }

o1 PE—— tor: : tor (const tor& - X
constant instance b{dyvec 3 + Myeotar MyVectors, v) £an(v.0)
variables. (m = new double[n];

+ “Member initializers are for(int 1. =0z 3 < n7 dtt)
used a lot in general. y BN SREl
Programming Design — Operator Overloading 17/49 Ling-Chich Kung (NTU IM)
Motivations and prerequisites Comparison and indexing operators

nent operators Add operators

Overloading an operator
A

* Anoperator is overloaded by “implementing a special instance function”.
— Igcannot be implemented as a static function.

* Let opbe the operator to be overloaded, the “sEecial instance function” is

always named

— The keyword operator is used for overloading operators.
* Let’s overload = for MyVector.

N——

Programming Design - Operator Overloading 19/49 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

68/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Comparison and indexing operators

Add

Overloading ==

To overload ==, simply do this:

class MyVector
{
private:

int n;

double* m;
public:

// others

bool |operator=—

(const MyVector& v) const;

}i

bool MyVector: :operator—
(const MyVectoré& v) const
{
if (this->n !'= v.n)
return false;
else {
for(int i = 0; i < n; i++) {
if (this->m[i] != v.m[i])
return false;

return true;

Programming Design — Operator Overloading

21/49

Ling-Chich Kung (NTU IM)

Assignment and self-assignment operators

Preventing assignments and copying

» In some cases, we disallow assignments between objects of a certain class.
— To do so, overload the assignment operator as a private member.

* Insome cases, we disallow creating an object by copying another object.
- To 0 S0, unplcmel}/h’c copy constructor .\//p'l rivate member.

. The Copy constructor, assignment operator, and destructor form a group.

— If there is no pointer, none of them is ed.

— If there is a pointer, all of them are needed.

stivations and prerequisites Comparison and indexing operators
Invoking overloaded operators
* We are indeed implementing instance functions with special names.
* Regarding invoking these instance functions:
int main() // without overloading int main() // with overloading
{ {
double dl[5] = {1, 2, 3, 4, 5}; double dl[5] = {1, 2, 3, 4, 5};
const MyVector al(5, dl); const MyVector al(5, dl);
double d2[4] = {1, 2, 3, 4}; double d2[4] = {1, 2, 3, 4};
const MyVector a2(4, d2); const MyVector a2(4, d2);
const MyVector a3(al); const MyVector a3(al) ;
cout << (al.isEqual(a2) ? "Y" : "N"); cout << (al == a2 ? "Y" : "N");
cout << "\n"; cout << "\n";
cout << (al.isEqual(a3) 2 "Y" : "N"); cout << (al = a3 ? "Y" : "N");
cout << "\n"; cout << "\n";
return 0; return 0;
} }
Programming Design — Operator Overloading 22/49 Ling-Chieh Kung (NTU IM)

Programming Design — Operator Overloading 41749 Ling-Chich Kung (NTU IM)

Assignment Operator

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 69/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

SYMBOLS MEANINGS

=" EQUAL: it assigns value to the variable

=" ADD EQUAL: it means it updated the value of the
variable after addition a+=5 (a=a+5)

o= SUBTRACT EQUAL: it means it updated the value
of the variable after subtraction a-=5 (a=a-5)

o MULTIPLY EQUAL: it means it updated the value of
the variable after multiplication a*=5 (a=a*5)

“f=" DIVISION EQUAL: it means it updated the value of
the variable after division a/=5 (a=a/5)

fog=" REMAINDER EQUAL: it means it updated the value
of the variable after remainder a%=5 (a=a%5)

=" AND EQUAL: it means both conditions are
necessary

=" NOT EQUAL: it means condition are not equal

String Class

String Class

he String class contains several methods that can be
ed to perform operations on a string.

Method Return Description Usage
Name Type

compareTo(String t) int Compares two strings string1.compareTo(string2);

length() int Gets length of string string1.length();
charAt(int i) char Finds ith character string1.charAt(3);
equals(String t) Boolean Are two strings equal? string1.equals(string2);
substring(int i, int j) String Finds substring from ith String1.substring(0, 2)
character to character before

jth one

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 70/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Correspondence between the C
library and the C++ string Class

C Library Functions C++ string operators/methods
strepy = (the assignment operator)
strcat += (assign+concat operator)

stremp R
strchr, strstr find() method

strrchr rfind() method

strlen size() or Jength() methods

C5 103 260

String Processing Function

strepy
strnepy
stremp
strnemp
strempi

stricmp
strnicmp

strdup
strchr
strrchr
strstr
strset
strnset
strrev

Copies a string into another

Copies first n characters of one string into another
Compares two strings

Compares first n characters of two strings

Compares two strings without regard to case ("i" denotes
that this function ignores case)

Compares two strings without regard to case (identical to
stremypi)

Compares first n characters of two strings without regard
to case

Duplicates a string

Finds first occurrence of a given character in a string
Finds last occurrence of a given character in a string
Finds first occurrence of a given string in another string
Sets all characters of string to a given character

Sets first n characters of a string to a given character
Reverses string

getline()

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

71/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

C++ strings File /O Self-defined header files

string input: getline ()

* For cin >>to input into a C++ string, white spaces are still delimiters.
* To fix this, now we cannot use cin.getline().
— The first argument of cin.getline () must be a C string.

* We use a global function getline () defined in <string> instead:
string s; V
getline(cin, (S)

) 7 g
* By default, getline () stops when reading a newline character. We may specify

the delimiter character we want:

string s;
getline(cin, s, '#')

\VA~AA~

| istream& getline (istreams is, stri.r‘g&)str); |

: I istream& getline(istream& is, stringé& str, char delim);

* Note that there is no length limitation.

Programming Design — C-++ Strings, File /O, and Header Files 9/62 Ling-Chich Kung (NTU IM)

getline() vs >>

File /O Self-de

>>vs.getline()

» The two operations are similar but different:
— >>tries to convert the piece into the specified type; getline () simply store
that piece as a C or C++ string.
— >>stops at the first character not of that type; getline () stops at one
character after the delimiter.
* Suppose that the text file now may contain the first name and last name of a

student, separated by a white space. Tony Wang: 100
— We use a colon to separate a name and a score. Alex Chao: 98
: _ | Rabin Chen: 95
* How to write a program to calculate the sum of scores? | rin: 90
Mary: 100
Bob Tsai: 80
Programming Design — C++ Strings, File 1/O, and Header Files 46/62 Ling-Chich Kung (NTU IM)
(S| S File /O Self-de

>>vs. getline()

#include <iostream> if (inFile)
#include <fstream> {
#include <string> ile(!inFile.eof())

using namespace std;

{
_getline (inFile, name, @

int main() inFile >> score; <
{ “sumScore 4= score;
ifstream inFile("score.txt"); } // good!
string name; cout << sumScore << endl; | Tony Wa.né}loo
int score = 0; } Alex Chao:
int sumScore = 0; inFile.close() ; Robin Chen: 95
Lin: 90
return 0; Mary: 100
} Bab Tsai: 80
Programming Design — C++ Strings, File /O, and Header Files 47/62 Ling-Chieh Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 72/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

File I/O Se

>>vs. getline()

*° >>stops af the first character not of that type. [Tony Wang)

* After the inFile >> score operation, the input cursor stops at [1005
the newline character. o8
* The next getline (inFile, name) operation reads only the Robin Chen
newline character into name. fj’n
— The cursor gets to ‘A’ in the third line. 90
* The next inFile >>’ eration then fails to convert tery
« > int int P 100
ex” into an integer. Bea¥raai
* To fix this problem, we need to manually bypass the newline 80
character.
— The member function ignore () ignores one character.
Programming Design — C++ Strings, File 1/0, and Header Files ~ 49/62 Ling-Chich Kung (NTU IM)
File /O Self-de
>>vs. getline ()
#include <iostream> if (inFile) Tony Wang
#include <fstream> { 100lj
#include <string> while(!inFile.eof()) ex Chao
using namespace std; { 1o
=) getline(inFile, @ in Chen
int main () inFile >> Gcore)) 95
{ inFile.ignore() Lin
ifstream inFile("score.txt"); sumScore += score; 920
string name; } // good! Mary
int score = 0; cout << sumScore << endl; 100
int sumScore = 0; } Bab Tsai
inFile.close() ; 80
return 0;
}
Programming Design — C++ Strings, File /O, and Header Files 50/62 Ling-Chieh Kung (NTU IM)
C+-+ strings File /O S
.
An alternative way
#include <iostream> if (inFile) Tony
#include <fstream> { 100 V<"
#include <string> while(!inFile.eof()) [Alex chao
using namespace std; { 98
\/getlj_ne(jnFile, name) ; Robin Chen
int main () V/getline (inFile, scoreStr); 95
{ -score = stoi (scoreStr) ; Lin
ifstream inFile("score.txt"); sumScore += score; 20
string name; } // good! Mary
string scoreStr; cout << sumScore << endl; 100
int score = 0; } Bab Tsai
int sumScore = 0; inFile.close() ; 80
return 0;
}
Programming Design — C++ Strings, File I/O, and Header Files 51/62 Ling-Chich Kung (NTU IM)

substr()

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 73/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

C++ strings File /O Self-defined header files

Substrings

* We may use substr () to get the substring of a string.

| string string::substr(size t pos = 0, size t len = npos) const; |

* string: :npos is a static member variable indicating the maximum possible
value of type size t.

* Asanexample: v

string s = "abcdef";

cout << s.substr(2, 3) << endl; // "cde"
cout << s.substr(2) << endl; // "cdef"

Programming Design — C++ Strings, File /O, and Header Files 10/62 Ling-Chich Kung (NTU IM)

String = "geeks"

Substring starts with:
0 0p igae IEREK THERS
ee eek eeks
ek eks

find()

C++ strings File VO Self-defined header files

string finding

* We may use the member function £ind () to look for a string or character.
— Just like strstr() and strchr () for C strings.

size t find(const stringé& str, size t pos = 0) const;
size t find(const char* s, size t pos = 0) const;
size t find(char c, size t pos = 0) const;

* This will return the beginning index of the argument, if it exists, or

string: :npos otherwise. S
b bt S it ind
Wstring s = "abodefg" ;
if(s.find("bcd") != s}w)
cout << s.find("bed"); // 1

Programming Design — C++ Strings, File I/O, and Header Files 11/62 Ling-Chieh Kung (NTU IM)

Insertion, Replacement, Erasing

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

74/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

C++ strings File /O Self-defined header files

%nsertion, replacement, and erasing

* We may }se%.nsert() , replace (), and erase () to modify a string.

string& insert(size t pos, const string& str);
string& replace(size t pos, size t len, const stringé str);
string& erase(size t pos = 0, size t len = npos);

int main()
{
cout << "01234567890123456789\n" ;
string myStr = "Today is not my day.";
myStr.insert(9, "totally "); // Today is totally not my day.
myStr.replace (17, 3, "NOT"); // Today is totally NOT my day.
myStr.erase(17, 4); // Today is totally my day.
cout << myStr << endl;
return 0;

Programming Design — C-++ Strings, File 1/0, and Header Files 13/62 Ling-Chich Kung (NTU IM)

File Stream

Input Source

af— (keyboard, file,

Input Stream network, program)

C++ Program

Output Sink
—- (console, file,

Output Stream network, program)

Internal Data Formats: External Data Formats:

= Text: char, wchar_t » Textin various encodings

* int, float, double, (US-ASCII, 1SO-8859-1, UCS-2, UTF-8,
etc. UTF-16, UTF-16BE, UTF16-LE, etc.)

» Binary (raw bytes)

File Streams

File Streams are of 2 types
* Input file stream
* Qutput file stream

Write Data to

-,‘ l | 1 [| l l } disk file

Output File Stream

C++
Program
| Input File Stream
Input data for ‘ | | ‘ |] | Read Data
processing from disk file

Rising Technologies, lalna [MH). + 91 9423156065, http:/ /www. RisingTechnologies.in

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 75/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

h

™~

streambuf

lostream

ifstream

fstream file

file \

ostream

iostream

| fstream

| ofstream |

T

fstream base

A

Stream classes for file operations

Object Oriented Programming in C++

File Mode Meaning
Parameter

Append mode. All output to that file to be
appended to the end.

ios::app

ios::ate

ios::binary
ios::in

ios::out
ios::nocreate
ios::noreplace

ios::trunc

Lecture Slides By Adil Aslam

File Opening Mode

Open a file for output and move the
read/write control to the end of the file.

file open in binary mode

open file for reading only

open file for writing only

open fails if the file does not exist

open fails if the file already exist

delete the contents of the file if it exist

C** SL(Strandard Library)

Memory model

Threads

Mutexes and locks
Thread local data
Condition variables
Tasks

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

Reader-writer locks

C++17

Parallel STL

C++20/23

Executors

Atomic smart pointers
std::future extensions
Latches and barriers
Coroutines
Transactional memory
Task blocks

76/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

i0s

| '

stream ostream

Y l
'

iostream

ifstream ofstream
| |
']

fstream

Self-defined Library

Self-defined header files

Libraries

* There are many C++ standard libraries.
— <iostream>, <fstream>, <cmath>, <cctype>, <string>, etc.
* We may also want to define our own libraries.
— Especially when we collaborate with others.
— Typically, one implements classes or global functions for the others to use.
— That function can be defined in a self-defined library.
* Alibrary includes a header file (.h) and a source file (.cpp).
"~ The header file contains declarations
— The source file contains definitions.

Programming Design — C++ Strings, File VO, and Header Files 53/62 Ling-Chich Kung (NTU IM)

(! s le /O Self-defined header files

Including a header and a source file

* When your main program also wants to include a self-defined source file, the
include statement needs not be changed.
— #include "myMax.h"
* We add a source file myMax.cpp.
— In the source file, we implement those functions declared in the header file.
— The main file names of the header and source files can be different.
* The two source files (main.cpp and myMax.cpp) must b&
— Each environment has its own way.

Programming Design — C-++ Strings, File /O, and Header Files ~ 58/62 Ling-Chich Kung (NTU IM)

Templates

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 77/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Templates in C++

template <typename T>
Tmin (Ta, Thb)

return a<b? a : b;

}
T
min{5,10) [
¥
int min (int a, int b}

return a<=b? a : b;

}

,l min(2.3,7.76)

float min (float a, float b)

{
return a<b? a: b;
}

Compiler generates
function when integer
arguments are passed

Compiler generates
function when float
arguments are passed

‘Templates ¢ standard <vector>

Template declaration

* To declare a type parameter, use the keywords template and typename.

template<typename T>

class TheClassName

{

// T can be treated as a type inside the class definition block

}i
— Some 81d codes write class instead of typename. Both are fine.

* We then do this to all member functions:

template<typename T> template<typename T>

T TheClassName<T>: :£(T t) void TheClassName<T>::f(int i)
{ {
// t is a variable whose type is T

// follow the rule even if T is not used
}; ;

}i

Programming Design — Templates, Vectors, and Exceptions 7155 Ling-Chich Kung (NTU IM)

Compiler internally generates
and adds below code
template <typename T> e J{'J:.n'l: myMax{int x, int y)

_T myMax(T x, T y) return (x > y)? x: y;

___{ _}
return (x = y)? x: y;
-1
int main()
Eak
cout << myMax<int=(3, 7) << endl; __El
cout << myMax<char=(:) =< endl;J”d—rﬁ____—\
return ©; Compiler internally generates
ﬁ and adds below code.
char myMax(char x, char y)
{
return (x > y)7 x: y;
1

#include <iostream>
#include <cmath>
using namespace std;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

78/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

template<typename KeyType>
class Character {
protected:
static const int EXP_LV =100;
KeyType name;
int level;
int exp;
int power;
int knowledge;
int luck;
void levelUp(int pInc, int kInc, int 1lInc);
public:
Character(KeyType n, int 1lv, int po, int kn, int 1lu);
virtual void print();
virtual void beatMonster(int exp) = ©; //pure virtual function
KeyType getName();

%5

//construct
template<typename KeyType>
Character<KeyType>: :Character(KeyType n, int lv, int po, int kn, int 1lu)
: name(n), level(lv), exp(pow(lv - 1, 2) * EXP_LV),
power(po), knowledge(kn), luck(lu) {

template<typename KeyType>
void Character<KeyType>::print(){
cout << this->name
<< ": Level " << this->level
<< " (" << this-»exp << "/" << pow(this->level, 2) * EXP_LV
<< ")," << this->power << "-" << this->knowledge
<< "-" << this->luck << endl;

template<typename KeyType>
KeyType Character<KeyType>::getName(){
return this->name;

template<typename KeyType>
void Character<KeyType>: :beatMonster(int exp){
this->exp += exp;
while(this->exp >= pow(this->level, 2) * EXP_LV){
this->levelUp(0, 0, 0);

template<typename KeyType>
void Character<KeyType>::levelUp(int pInc, int kInc, int 1Inc){
this->level++;
this->power += pInc;
this->knowledge += kInc;
this->luck += lInc;

template<typename KeyType>
class Warrior : public Character<KeyType> {

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 79/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

private:
static const int PO_LV = 10;
static const int KN_LV = 5;
static const int LU_LV = 5;

public:
Warrior(KeyType n, int 1lv = 0);
void print();
void beatMonster(int exp);

g

template<typename KeyType>
Warrior<KeyType>: :Warrior(KeyType n, int 1lv)
: Character<KeyType>(n, 1lv, 1lv * PO_LV, 1lv * KN_LV, 1lv * LU_LV) {}

template<typename KeyType>
void Warrior<KeyType>::print() {

cout << "Warrior: ";
Character<KeyType>: :print();

template<typename KeyType>
void Warrior<KeyType>::beatMonster(int exp){ // function overloading
this->exp += exp;
while(this->exp >= pow(this->level, 2) * Character<KeyType>::EXP_LV){
this->levelUp(PO_LV, KN_LV, LU LV);

template<typename KeyType>
class Wizard : public Character<KeyType> {
private:

static const int PO_LV = 4;
static const int KN_LV = 9;
static const int LU_LV = 7;

public:
Wizard(KeyType n, int lv = 0);
void print();
void beatMonster(int exp);

%

template<typename KeyType>
Wizard<KeyType>: :Wizard(KeyType n, int 1lv)
: Character<KeyType>(n, 1lv, 1lv * PO_LV, 1lv * KN_LV, 1lv * LU _LV) {}

template<typename KeyType>
void Wizard<KeyType>::print() {

cout << "Wizard: ";
Character<KeyType>: :print();

template<typename KeyType>
void Wizard<KeyType>::beatMonster(int exp){ // function overloading
this->exp += exp;
while(this->exp >= pow(this->level, 2) * Character<KeyType>::EXP_LV){
this->levelUp(PO_LV, KN_LV, LU_LV);

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 80/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

template<typename KeyType>
class Team {
private:
int memberCount;
Character<KeyType>* member[10];
public:
Team();
~Team();
void addwWarrior(KeyType name, int 1lv);
void addWizard(KeyType name, int 1lv);
void memberBeatMonster(KeyType name, int exp);
void printMember(KeyType name);

%

template<typename KeyType>
Team<KeyType>::Team(){
memberCount = 0;
for (int i = 0; i < 10; i++){
member[i] = nullptr;

template<typename KeyType>
Team<KeyType>: :~Team(){
for (int i = 9; i < memberCount; i++){
delete member[i];

template<typename KeyType>
void Team<KeyType>::addWarrior(KeyType name, int 1lv){
if (memberCount < 10){
member[memberCount] = new Warrior<KeyType>(name, 1v);
memberCount++;

template<typename KeyType>
void Team<KeyType>::addWizard(KeyType name, int 1lv){
if (memberCount < 10){
member[memberCount] = new Wizard<KeyType>(name, 1lv);
memberCount++;

template<typename KeyType>
void Team<KeyType>::memberBeatMonster(KeyType name, int exp){
for(int i = 0; i < memberCount; i++){

if (member[i]->getName() == name){
member[i]->beatMonster(exp);
break;

}

template<typename KeyType>
void Team<KeyType>::printMember (KeyType name){
for(int i = ©; i < memberCount; i++){

if(member[i]->getName() == name){
member[i]->print();
break;

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 81/88

1/23/23, 12:02 AM

int main(){

cout << "Welcome to Learning C++ Data Structure and Algorithm" << endl;

Memo_PL_Cplusplus

cout << "Topic: OOP - Class" << endl << endl;

Team<string> t1;

tl.addWarrior("Alice", 1);
t1l.memberBeatMonster("Alice", 10000);

tl.addWizard("Bob", 2);
tl.printMember("Alice");

Team<int> t2;
t2.addWarrior(1l, 1);

t2.memberBeatMonster (1, 10000);

t2.addWizard(2, 2);
t2.printMember(1);

return 0;

C** STL(Strandard Template Library)

CONTAINERS

SEQUENCE ADAPTER
VECTOR QUEUE
B PRIORITY
DEQUE QUEUE
ARRAYS STACK

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

ASSOCIATIVE UNORDERD
UNORDERED
SET SET
MULTI-SET UNORDERED
MAP
MAP
MULTI-MAP UNORDERED
MULTI-SET
UNORDERED
MULTI-MAP

82/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Intro to the C++ Standard Template Library (STL)

*» The STL is a collection of related software elements

Containers

+ Data structures: store values according to a specific organization

terators

« Variables used to give flexible access to the values in a container

Algorithms

+ Functions that use iterators to access values in containers
+ Pertorm computations that modify values, or creates new ones

Funclion objects

« Encapsulate a function as an object, use to modily an algorithm
+ The STL makes use of most of what we've covered
- Extensive use of function and class templates, concepts
+ The STL makes use of several new ideas too
- typedefs, traits, and associated types

CSE 332: C++ STL containers

Element count

Extremum

Searching element |- Non-modifying algorithm

For_each algorithm

Range comparison
Inspection range
Copying element
Moving element
Swapping element

- Modifying algorithm

Assigning value
Replacing element
Removing some elements

{ STL components ‘

R .] s ing algorithm
emoving repeated elements |— | { . T —
o - Algorithm |-—

Reversing

Rotating

Permuting

Shuffling

Moving to the Front
Partition into subranges

Sorting all elements

Partial sorting

Sorting from n
Heap increment

Searching element

- Sorted-range algorithm

Merging element |

\

\

- Mutating algorithm

- Sorting algorithm

Numeric algorithm

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

| Associative container -

(N map
{ Container |- -
YA multimap
/
/

\{ Tterator -

Ordered set array
vector
Sequential container -| deque
st
Sorted set Forward_list
set

multiset

Unordered set

unsorted_set
| unsorted_muitiet
unsorted_map

Unordered container -

stack
Special container | queue
priority queue

operator !=
operator =
operator *
operator ==
Basic operations -| begin()
end()
operator ++

cbegin()
cend()
Forward iterator

Bidirectional iterator
Category -| Random access iterator

Input iterator
Output iterator

unsorted_multimap

83/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Insert iterators

ToEES
Allocator , Stream iterators ‘ ZioRER
IXIRES reverse_iterator | lterator adapters
sdt::allocator Iterators !

malloc_allocator Container<T> : ! iterator

default_allocator

5%

Containers &% Algorithms

Basic Mutating Algorithms

Sequence Containers

Non-mutating Algorithms

Associative Containers
Sorting and Searching Algorithms

Arithmetic Operations

Comparisons {HRE
Logical Operations
Identity and Projection

Functors

SIOECHEEE
Function adaptors

binderlst, binder2nd,
unary_negate, binary_negate,
unary_compose, binary_compose

Four STL Components

» Containers: used to manage collections
of objects of a certain kind.

» Algorithms: act on containers.
E.g. initialization, sorting, searching....

* Iterators: used to step through the
elements of collections of objects.

* Functors are objects that can be treated
as though they are a function or function
pointer.

Vector

The standard library <vector>

The standard library <vector>

* A vector is very easy to use.
— To create a vector, indicate the type of items:

vector<int> vl; // integer vector
vector<double> v2; // double vector
vector<Warrior> v3; // Warrior vector

* Member functions that modifies a vector:

— push back(), pop_back(), insert(), erase(), swap(), =, etc.
* Member functions for one to access a vector element:

— [1, front(), back(), etc.
* Member functions related to the capacity:

— size(), max size(), resize(), etc.

Programming Design ~ Templates, Vectors, and Exceptions 28755 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 84/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Array: SetiMultiset; Unordered Set/Multiset:
EEEEEEEEE |

n |
NN @

Deque;

F

EEEEEENE

G -

Exception Handling

Object Oriented Programming in C++

Exception Handling in C++

* The process of converting system error messages

* Exception
* An exception is an event, which occurs during the

into user friendly error message is known

as Exception handling. This is one of the powerful
feature of C++ to handle run time error and
maintain normal flow of C++ application.

execution of a program, that disrupts the normal
flow of the program's Instructions.

Lecture Slides By Adil Aslam

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

85/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

try block
Statement that causes | Exception object
an exception creator
Throws
exception
object
catch block
Statement that .
handles the exception Exception handler
Fig: Exception Handling Mechanism
e '-'g Std : exception

| std : domain_ermor

<——— std: bad_alloc

| —— Ml | i
E std : bad_cast std : invalid_argument

| «—— std : length_error
«———— std: bad_typeid gth.

| +—— std : out_of _range
4 5td : bad_exception e

—— std : logic_failure - std : overflow_error |

std : range_error

——— std : runtime_error t |
std : underflow_error

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 86/88

1/23/23, 12:02 AM

Memo_PL_Cplusplus

Exception handling

Standard exception classes

* Inthe C++ standard library, we have the following standard exception classes:
— Inheritance and polymorphism! exception
logic_error

t’;(i i); domain error
} invalid argument
// this also works length error

catch(logic error e) {

t of
cout << "...\n"; out_ot_range

runtime error

}
range_error
— Include <stdexcept> to use them. overflow error
underflow error
Programming Design — Templates, Vectors, and Exceptions 47/55 Ling-Chich Kung (NTU IM)

Exception handling

Throwing an exception

* Let the client catch the exception:

int main()

#include <iostream> {

#include <stdexcept> int a[5] = {0},

using namespace std; try {

f(a, 5);

void f(int a[], int n) throw(logic error) }

{ catch(logic error e) {
int i =0; cout << e.what() ;
cin > i; }
if(i<0 |l i>n) for(int i = 0; 1 < 5; i+H)

throw logic error("..."); cout << a[i] << " ";
af[i] =1; i’ return 0;
} }

* what() returns the message generated when throwing an exception.

Programming Design - Templates, Vectors, and Exceptions 49755 Ling-Chich Kung (NTU IM)

Exception handling

Modifying the function header

» Functions that throw an exception may have a #include <iostream>
throw clause at the end of their headers. #include <stdexcept>
N = a o v i namespace std;
— This restricts the exceptions that a function e #
can throw. void f(img a[], int n)
— Omitting a throw clause allows a function) throw (logic_error)

to throw any exception. int i=0;

* To allow multiple types of exceptions: cin >> i;
if(1 <0 || i>n)
void £(int a[], int n) throw(typel, :ypeZ)J [?]‘“’”11%10}““(”- ek
ala)] = 1;
¢ The documentation of a function (or method) !
should indicate any exception it might throw.
Programming Design — Templates, Vectors, and Exceptions 50/55 Ling-Chich Kung (NTU IM)

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html

87/88

1/23/23, 12:02 AM Memo_PL_Cplusplus

Exception handling

Functions that do not(?) throw exception

+ Ifa function will never throw an exception, one may indicate this explicitly.
* For example, (in C++ 11) the function length () of the class string is actually
defined as:

[size t length() const noexcept; I

— This means that this function never throws an exception.

* When one calls a function, it is good to know that it may (or will never) throw
an exception.

— Therefore, indicate this if you know that is true.
* Itis the programmer’s responsibility make sure that the function indeed does not
throw an exception; the compiler does not check anything.

Programming Design - Templates, Vectors, and Exceptions 51/55 Ling-Chich Kung (NTU IM)

Exception handling

Defining your own exception classes

» C++ Standard Library supplies a #include <stdexcept>
number of exception classes. using namespace std;
* You may also want to define your own | , MyException : public exception
exception class. {
— This helps your program P“‘g‘; P o :
P i . ception (const string& msg = ""
communicate better to your clients. : exception(msg.c str() {)
— Your own exception classes should | }:
inherit from standard exception
classes for a standardized
exception working interface.
Programming Design - Templates, Vectors, and Exceptions 52/55 Ling-Chich Kung (NTU IM)

-- Memo End --

file:///C:/Users/User/Downloads/Memo_PL_Cplusplus.html 88/88

