1/29/23, 4:33 PM

Memo_OS_20230129

Operating System

Types of OS

Multi
programing
Batch Operating
system

Time Sharing

operating
system

Simple Batch
Operating
System

Network Ty p €3 O f
Dsiiiii"g Operating
System

Multi Processes
Operating
system

Mobile
Operating
System

Distributed
Operating
System

Real time
Operating
System

a . R
What are the different types?

Linux is a Unix-ike computer

operating system assemblad

under the model of free and

open source sofware Microsoft Windows i a senes
of graphical interface operating
systems developad, marketed,
and sold by Microsoft.

developmant and distribution.
Mac OS is a series.
of graphical user ’
interface-
based opearating
sysiems developad

oy Apple Inc. for
their Macintosh

i0S (prendousty iPhone
05} is a mobila
operating
systamdevelopad and
distributed by Apple
Inc. Oniginally urailed

in 2007 for the iPhans, - - BSDVOS had a reputation for
it has been extended fo Android is a Linux-based operating reliability in sarver rales; the
smponmharﬁppla system dasianed primarily renawned Unix programmer and
devices such as for touchsereen mobile devices such author W. Richard Stevens usad
the iPod Touch a5 smariphanes and tablst it for his own personal web

_ computars. Intially developed by servar for this reason. /

s o]0 BN Ly o

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

1/136

1/29/23, 4:33 PM Memo_OS_20230129

Real time Operating system

- Real time operating systems are used as OS in real time system.
- In RTOS tasks are completed in given time constraints.

- RTOS is a multitasking system where multiple tasks run concurrently

- system shifts from task to task

- must remember key registers of each task
(this is called context of task)

Applic ation
Software

RTOS

Hardware

EmbeddedCraft

crating of imeligest vyt

.. Real-Time Operating System

An RTOS is an OS for response time-controlled and event-

controlled processes. It is very essential for large scale
embedded systems.

| # RTOS occupy little space from 10 KB to 100KB

The main task of a RTOS is to manage the
resources of the computer such that a particular operation

executes in precisely the same amount of time every time it
occur.

Renesas automotive dashboard platioom.

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 2/136

1/29/23, 4:33 PM Memo_OS_20230129

| Soft RTOS...
» In a soft real-time system, it is considered undesirable, but not
catastrophic, if deadlines are occasionally missed.
» Also known as “best effort” systems

» Most modern operating systems can serve as the base for a
soft real time systems.

+ Examples:
— multimedia transmission and reception,
— networking, telecom (cellular) networks,
— web sites and services
— computer games.

Hard RTOS...
* A hard real-time system has time-critical deadlines that must
be met; otherwise a catastrophic system failure can occur.
« Absolutely, positively, first time every time

» Requires formal verification/guarantees of being to always
meet its hard deadlines (except for fatal errors).

* Examples:
— air traffic control
— vehicle subsystems control
— Nuclear power plant control

OS Structure

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 3/136

1/29/23, 4:33 PM Memo_OS_20230129

Components

/ Operating System \ User
Boot Loader G NP4 G

Kernel Applications
Device Drivers 4} v {}
Security < Operating System

Networking 4} U 4}

Hardware
User Applications

Computer Operating Systems 10

7. Operating-System Structure

* How 0S components are
interconnected and melded into a
kernel.

7.1 Simple Structure
* Started as small, simple, and limited
systems and then grown beyond their
original scope
* Example : MS-DOS - written to
provide the most functionality in the
least space
— Not divided into modules
— Although MS-DOS has some
structure, its interfaces and levels
of functionality are not well

application program

ROM BIOS device drivers

separated
MS-DOS layer structure
Leganathan R, CSE . HKBEKCE
* I Ty
a GBS &

Layered OS Architecture

m Lower levels independent of upper levels
» N™ layer can only access services provided by 0~(N-1)t layer

m Pros: Easier debugging/maintenance
m _Cons:

layor N
user interface Operator

: User Program
layer 1 1/0 Management
~ Device Driver]

Memory Management]

Process Allocation multiprogramming l

Hardware

fig:- layered Architecture

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 25

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 4/136

1/29/23, 4:33 PM Memo_OS_20230129

© 'Operating System Layers

CIS410

Figure 11-3 » User

Operating system

layers (shaded) Command layer

Service layer

User’s interface to OS

Contains set of functions
executed by application

programs and command
layer

Hardware

Kernel

Service layer
Manages Tresources;

interacts directly with
computer hardware User

Application program

Hardware and Software Architecture

user and other system programs

‘ GUI batch command line |

‘ user interfaces ‘

system calls

o resource
. 1 -
operations systems SRMSECRt O allocation

s protection
. and
detection . security
sernvices

operating system

program 1o file
execution

H accounting ‘

hardware

OS Structure: Monolithic structure

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

signals terminal file system CPU scheduling
handling swapping block 1/0 page replacement

character I/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 5/136

1/29/23, 4:33 PM

Memo_OS_20230129
" S CE B
Microkernel OS

m Moves as much from the kernel into “user” space
m Communication is provided by message passing
m Easier for extending and porting

Processes

Microkernel
Network Device Graphics

Processes Drivers Drivers Drivers

Hardware
Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab

Monolithic Kermnel Microkemel
based Operating System based Operating System
Auplcsten System Call

Application L Device
IPC : Driver

Hardware

Hardware

User Space
| Applications |

L Microkemel _______|

Hardware

P

Monolithic Kernel Microkernel

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

6/136

1/29/23, 4:33 PM

Memo_OS_20230129
" JEE
n
Modular OS Architecture

® Most modern OS implement kernel modules
» Uses object-oriented approach
» Each core component is separate
» Each talks to the others over known interfaces
» Each is loadable as needed within the kernel

m Similar to layers but with more flexible ["""J

i V-y:--l»un.::_ s

evil chdin() mlorm evil geadents()
'

&= ¥ x4

m E.g., Solaris

real chdiel) real open() eal geadents()

m How to write kernel module
» http://www.linuxchix.org/content/courses/kernel_hacking/lesson8
» http://en.wikibooks.org/wiki/The_Linux_Kernel/Modules
» https://www.thc.org/papers/LKM_HACKING.html|

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 27

Virtual Machine

'.—»

Virtual Machine LB R e

m A virtual machine takes the layered
approach to its logical conclusion
> It treats hardware and the operating system
kernel as though they were all hardware
® A virtual machine provides an interface
identical to the underlying bare hardware

> Each process is provided with a
the underlying computer

m Difficult to achieve due to “critical instry tion’
<O “critical instruction”

virtual) copy of

Chapler2 0S-Structure

. Bt 4 x

Virtual Machine
processes
processes
processes Drocesses
i programm ﬂ;/'.—; T
kernel kemnel

k’:"" el

— hine
hardware atlor
|
(a) R
o o
perating Systam Concag ,,\,

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

7/136

1/29/23, 4:33 PM Memo_OS_20230129

" JEE
Usage of Virtual Machine

m provides complete protection of system
resources

m a means to solve system compatibility
problems

m a perfect vehicle for operating-systems
research and development

m A mean to increase resources utilization in

cloud computing

* S 82t ¥ xd
Vmware (Full Virtualization)

®m Run in user mode as

appicaton 2ppicaton appicaton appicaton
an application on top :
of 05 Lotz
m Virtual machine it | et || e
believe they are
running on bare i
hardware but in fact]

. » : host operatng system
are running inside a =

user-level application

hacare
T S B)

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 31
" JEE—— .
a) @i'lﬁ*fi’g
Para-virtualization: Xen
m Presents guest with system -ﬁmﬁ}'ﬁ- .Wm"%‘vgmn -,"'Jm";'“%:::.
similar but not identical to Se SpoRcAR B device UM R cRd A e
the guest’s preferred systems DD (pacios | Moo fescpes
(Guest must be modified) aoet e
virtual platform
m Hardware rather than 0S and il Sialibolonlt
its devices are virtualized
(Only one kernel installed) il
network addresses
m Within a container (zone) [
processes thought they are @ @
the only processes on the
system m Solaris 10: creates a virtual layer

between OS and the applications

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 32

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 8/136

1/29/23, 4:33 PM Memo_OS_20230129

* A

Java Virtual Machine

m Compiled Java programs are platform-neutral

bytecodes executed by a Java Virtual Machine

.|

(Jvm)

m JVM consists of
- class loader
- class verifier
- runtime interpreter

Java
interpreter
T

L[JavaAPl
class files

'

ost system
(Windows, Linux, etc)

m Just-In-Time (JIT) compilers increase

performance

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab

- SP vs MP vs Cluster

Symmetric
Single Multiprocessing

Processor

- Multiprogramming

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

CIENE X 4

Clustered Symmetric Processing

9/136

Memo_OS_20230129

1/29/23, 4:33 PM

Multiprogramming Batch Systems |

Multiprogramming: several jobs are kept in main memory
at the same time, and the CPU is multiplexed among them
which requires memory management and protection.
0
operating system
e Switching
Job Pool between jobs
— job 1 —
job 3
Job CPU
Scheduling ™~ Scheduling
512K
1.12

Operating System Concepts

MULTIPROGRAMMING

VERSI

15

MULTITASKING

sed on the concept of context
switehing.

TIVATE] IRneInac
improve CFPU

- Time Sharing

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Multitasking is when more than
one task cuted at a single time
utilizing multiple CPUs

It is based on the concept of time
sharing.

It enables execution of multiple tasks
and p: s at the same time to
i PU performance.

It utilizes multiple CPUs for task
allocation.

[t takes less tinge to execute the tasks
or pl'ﬂ(‘ESS'E‘-E-.

The idea is to allow multiple
processes to mun simultaneously via
time sharing.

A

10/136

1/29/23, 4:33 PM

Memo_0OS_20230

129

Time-Sharing Systems - Interactive Computing I

a time-shared computer.

I/O
operations

Interactive

\.
@&

[1\

A time-sharing system uses CPU scheduling and
multiprogramming to provide each user with a small portion of

Main Memory

= CPU
Scheduling
Job1 —
Job2 g
o3 |~
Multiprogramming

Memory Management

Operating System Concepts

System Boot

Memory (RAM)

4. Execute

Completed bootstrap
loader

6. 03 execute
system
configuration job

O3S object code

7. Start-up
complete, waiting
user's command

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

1.15

ROM 2. Execute

Simple bootstrap
loader (Bootsirap
record)

Trigger
=

T

Disk

D g

N Completed ™4
bootstrap loader

- KT ETEHHEADENE [Block]

[Boot block]
-$#8H [Boot block | RIGHEE * A
[Boot disk] = [System disk]

(OS5 object code
L/

11/136

1/29/23, 4:33 PM

Memo_OS_20230129

ROS
1
posT [1]| | I1PLDD [E_‘
Boot
Device E
Boot
RAM Record
. R e
Kernel sysinit [5] e
(2]
Process 0 Process 1 & Kernel
rc.boot phase 1
Boot File
Boot |_— System
Device RAM |‘,..----""""" Image
Driver Disk
_—] Customized
i Data
Boot Customized Il"'##
Control Data
Block e

ROS Kernel Init Phase

V Booting from a Disk in Windows 2000

Run bootstrap code in ROM
Read boot code in ;

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

12/136

1/29/23, 4:33 PM Memo_OS_20230129

LINUX

sS00T rPR0OC=5
CHART

System starts BIOS

located on flash SVSIEIII SIHHIIII

memory Bms MBR

Bootloader

MBR contain bootloader.
Bootloader (grub) goes
thru two stages.

After the two stages , kernel
and initrd images is loaded
H in memory

Kernel starts first process init.
It looks for /etc/inittab file

In /etc/inittab file it will
mention the runlevel

Main memaory

i Disk storage
s Bootstra m
(permanent) p program -} &
Operating .
system .\\
RAM
(volatile)
Devices

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 13/136

1/29/23, 4:33 PM Memo_OS_20230129

7 N\

= MB Bootloader
. The PC is tumed | + The MBR oads
an & the BIOS | code from | Boatbaeto
initializes the I m:mnl:n bootsector of the 1 E:ds & rurs thle
hardware. active partition.
the MBR at the bootloader from

start of disk 0. its filasystem.

Active
Partition

OS - Interrupt Driven

HW Interrupt =t 5l

resident monitor

interrupt
vector

@ perform the servic

routine for device

@ return to
@ user

an interrupt
from device i

oceurs
user program

Chapter1 introduction Operating System Concepts - NTHU LSA Lab 2

' JE——— & 2t Bl
SW Interrupt

resident monitor

@ 1 —— perform
1/0

trap to
monitor
return to
user
user program
Chapter1 introduction Operating System Concepts - NTHU LSA Lab 23

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 14/136

1/29/23, 4:33 PM

Memo_OS_20230129

! Interrupt Vector Table
== P

System call dispatcher

—

Syscall

1
1
n 1 [_!_:>
i n
Process B .
Exceptional
Control
-.- Flow
Heap (ECF)
Initialized data
Code 0

A process is the OS abstraction

Syscall table

handler
(e.g.read())

B

Interrupt Handlers ‘

for executing a program with
limited privileges

CPU in user mode

Interrupt Vectors

= The CPU must know where to
fetch the next instruction follo
an interrupt.

= The address of an ISR is defi
an interrupt vector.

= The MSP430 uses vectored

interrupts where each ISR has its

By

Exception Handlers ‘

wing

CPU in kernel mode

Interrupts

0xFFFF
Interrupt Vector Table

16 vectors

own vector stored in a vector table

located at the end of program
memory.

= Note: The vector table is at a fixed
location (defined by the processor

data sheet), but the ISRs can be
located anywhere in memory.

BYU CS 224

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Stacks / Interrupts

(ISR Addresses)

0xBFFF

0x0400
0x03FF

0x0200
0x01FF
0x0000

29

15/136

1/29/23, 4:33 PM

Memo_OS_20230129

Interrupt Vector

« |tis an array of pointers that point to the
different interrupt handlers of the different
types of interrupts.

A

Hard Drive Interrupt handler

— USB Interrupt handler (mouse,

kbd)
N Ethernet Card Interrupt handler

\ Page Fault Interrupt handler

Interrupt Vector Table of
8086/8088

3FFH

3FCH

OB0H

| oren
For system,
27 interrupts

\ o140
£ 010H

00CH

.]
5. dedicated 4 oosi
interrupts |

004H

_ o0oH

—4ER entrance of INT 255—

—HeR entrance of INT 32—

—HeR entrance of INT 34—

—H8R entrance of INT 65—

ISR entrance of INT 4
(overflow)

ISR entrance of INT 3
(breakpoint)

ISR entrance of INT 2

(NMI)

ISR entrance of INT 1
(single step)

ISR entrance of INT 0

(divide error)

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

m 256 interrupts
“ 0~4 dedicated

<+ 5~31reserved for system use
00 08H~OFH : 8259A
010H~1FH : BIOS

+ 32~255 reserved for users
[120H~3FH : DOS
0 40H~FFH : open

16/136

1/29/23, 4:33 PM Memo_OS_20230129

Program
Port H Interrupt occurs
when executing M
Address | " Intermupt
$1020 [TSTUCTM .,-// Vector Table
$1022 m ump to Port H :
—— rt vVector*
{gEdC]]tmnjump to
EdD [37H address$1078

1076 [CHoNG

Executs Interrupt
Serice Routing
(shaded anea)

* DBug12 Intermupt Vector
Mapping

Goto
Intstraction

OS - Dual Mode Operation

user mode
(mode bit = 1)

set mode bit = set mode bit =1
before switching before switching
to kermnel mode to user mode

kernel mode

(mode bit = 0)

4| thread

sr.

e

Kernel Mode zystem call | retum addr check

| wEar | | | Foerred [u=er |
8D | stnck | e siack Isreum | gk

auddress
returr
}J_qﬂ.r_ ‘ ‘ valig ‘iﬂgr_

A EEEAETERSEERTES TN SRS

System Call vs API(Application Programm Interface)

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 17/136

1/29/23, 4:33 PM

Memo_OS_20230129

" S & 2t
System Calls & API

m System calls
> The OS interface to a running program
» An explicit request to the kernel made via a software interrupt
» Generally available as assembly-language instructions
m API: Application Program Interface
» Users mostly program against APl instead of system call
» Commonly implemented by language libraries, e.g., C Library

> An API call could involve zero or multiple system call
+ Both malloc() and free() use system call brk()
« Math API functions, such as abs(), don’t need to involve system call

(Application Program nterface | | irary (ibc)|

System Calls H Jusr/src/linux/arch/i386/kernel/entry.S '

epts - NTHU LSA Lab 1"

e
Interface vs. Library

® User progran

" JEE CAEN S

API: Application Program Interface

m Three most common APIs:

» Win32 API for Windows
« http://en.wikipedia.org/wiki/Windows_API

+ http://msdn.microsoft.com/en-
us/library/windows/desktop/ff818516%28v=vs.85%29.aspx

» POSIX API for POSIX-based systems (including virtually all
versions of UNIX, Linux, and Mac OS X)

+ POSIX =>» “Portable Operating System Interface for Unix”
+ http://en.wikipedia.org/wiki/POSIX
+ http://www.unix.org/version4/GS5_APIs.pdf

» Java API for the Java virtual machine (JVM)

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 13

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 18/136

1/29/23, 4:33 PM Memo_OS_20230129

Ty ™

SYSTEM CALLS n—
ey O

Example System Call Sequence
Acquire input file name

H
¥
—a

open (1
Implementation
Write prompt to screen
Acceplinput

Acquire output file name
Write prompt to screen
Accept input . R . R

Open the input file The handling of a user application invol
if file doesn't exist, abort the open() system call

Create output file
if file exists, abort

| Loop
1 Read from input file register
| Write to output file X: parameters
' Until read fails for call
| Close output file
| Wrile completion message (o screen il [iFouiiabie Yy

Terminate normally

=i

system call

retum

user program

Example of how system calls are used. operating system

Passing of parameters

APl — System Call — OS Relationship

user application

open ()
user
mode
system call interface
kernel
mode A
2 open ()
Sys call : .
handler Implementation
i » of open ()
t 1
it Return &

. mode-

change

jump_table return
(function pointer
array)

Types of System Calls

s Process control
q Load, execute, create process, wait, etc.
q Differs between single-tasking and multi-tasking.
s File management
q Create/delete file, open/close, read/write, etc.
s Device management
q Read, write, reposition, attach/detach device, etc.
s Information maintenance.
q Get time/date/process/file, set time/date/processffile, etc.
s Communications

q Send/receive messages , create/delete communication,
etc.

g Two models for IPC (interprocess communication):
messages-passing and shared-memory.

Operating System Concepts — 7+ Edition, Jan 14, 2005 221 Silberschatz, Galvin and Gagne ©2005

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 19/136

1/29/23, 4:33 PM

Memo_OS_20230129

EXAMPLES OF WINDOWS AND UNIX SYSTEM CALLS

Windows Unix
Process CreateProcess() fork()
Control ExitProcess() exit ()
WaitForSingleObject () wait ()
File CreateFile() open()
Manipulation ReadFile() read ()
WriteFile() write()
CloseHandle () close()
Device SetCaongoleMode () ioctl()
Manipulation ReadConsole () read()
WriteConsole() write()
Information GetCurrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep () sleep()
Communication CreatePipe() pipe
CreateFileMapping() shmget (O
MapViewDfFile () mmap ()
Protection SetFileSecurity() chmod ()
InitlializeSecurityDescriptor() umask(Q)
SetSecurityDescriptorGroup() chown ()

API

VERSUS
SYSTEM CALL

API
EE EE I EEEEEEEEEEEEESR
A set of protocols, routines,
functions that programmers
use to develop software to
facilitate interaction
between distinct systems
EE EE I EEEEEEEEEEEEESRN
Helps to exchange data
between various systems,
devices and applications

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

SYSTEM CALL

A programmatic way in
which a computer program
requests a service from the

kernel of the operating

system it is executed on
EE S E S EEEEEEEEEEEEER
Allows a program to access
services from the kernel of
the operating system

Visit www.PEDIAA.com

20/136

1/29/23, 4:33 PM Memo_OS_20230129

SYSTEM CALL
VERSUS
LIBRARY CALL

SYSTEM CALL LIBRARY CALL
EEEEEEEEEEEEEEEEREDR EEEE R EEEEEEENEREEEN
A request by the program A request made by the
to the kernel to enter kernel program to access a
mode to access a resource function defined in a
programming library
EEEEEEEEEEEEEEEREEESR EEEEREEREEENEEEREEREREESR
The mode changes from There is no mode
user mode to kernel mode switching

Not portable Portable

Execute slower than library Execute faster than system
calls calls

System calls have more Library calls have less
privileges than library calls privileges than system calls

fork() and exec() are some fopen(), fclose(), scant() and
examples for system calls prinf() are some examples for
library calls

Visit www. PEDIAA.com

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

21/136

Memo_OS_20230129

1/29/23, 4:33 PM

OPERATING SYSTEM
VERSUS
APPLICATION SOFTWARE

OPERATING SY

A system software that

manages computer hardware
and software resources and
provides common services

APPLICATION SOFTWARE

A software designed to
perform a group of
coordinated functions,
tasks or activities for the
benefit of the user

for computer programs
E N EEEEEEEEEEEEEEEER
Performs a single specific
task

EEEEEEEEEEEEEEEEEEEDR
Works as the interface between
the user and hardware,
performs process management,
memory management, task
scheduling, hardware device
controlling and many more
EEEEFEEEEEEEEEEEEEESRN EEEEEEENEEEEEEEEEEEER

ed using C, C++,

ages
&

Developed using Java,
Visual Basic, C, C++

Devel

Assembly lang

E S EEEEEEEEEEEEEEEER

Runs only when the user
requests to run the

application

Boots up when the user
switches on the computer and
runs till he switches off the

machine
EEEEEEEEEEEEEEEEEEDR

Cannot be installed without
an operating system

EE EEEEEEEEEEEEEEEEER
Necessary for the proper

functioning of the computer
S EEEEEEEEEEEEEEEEER

Ex: Word, Spreadsheet,
Presentation, Multimedia tools,
Database Management Systems

Ex: Windows, Unix, Linux,
DIONY

Visit www.PEDIAA.com

Functions of OS

22/136

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

1/29/23, 4:33 PM Memo_OS_20230129

02

08 File

Management

Device
Management

Job Functions 03
Accounting of

Coordination
Between
S/w and User

06 " Security
¥/ Detection y
¥

05

(&2 The Operating System

\ * The OS is responsible for all the functions
; of hardware and also software

Process
Management

Memory
Management

Device
Drivers

Disk
Management

Security Networking

User Interface

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 23/136

1/29/23, 4:33 PM Memo_OS_20230129

1. User Interface

Command Line Interface (CLI)
— Interaction with text/commands

Batch Files
— Interaction with the help of batch files (.bat)

Graphical User Interface (GUI)
— User friendly

[N

— Easier to use : pointing device, menus etc
Hybrid Ul

- RS
User Interface

m CLI (Command Line Interface)
> Fetches a command from user and executes it

> Shell: Command-line interpreter (CSHELL, BASH)
+ Adjusted according to user behavior and preference

m GUI (Graphic User Interface)
> Usually mouse, keyboard, and monitor
> Icons represent files, programs, actions, etc

> Various mouse buttons over objects in the
interface cause various actions

Chapter2 OS-Structure Operating System Concepts - NTHU LSA Lab 7

Process Management

roduction to Operating System _ Process Management

Source Code

Complier
Object File
- Lm.L:x'

Executable
File

Terminated

Suspended
Ready

Event Occur

Stspended ",/
Blocked

file:///C:/Users/User/Downloads/Memo_0OS_20230129.html 24/136

1/29/23, 4:33 PM Memo_OS_20230129

Introduction to Operating System _ Program Executing _ ALL

»[[Rastruction Register)

Boot Block
ootsirap Program |

|
|
A
|
b
|
|
I
|
|
|
|
|
|
|
I
|
t
|
)
I

|
|
|

TURES CS/IT NET&JRF for full syllabdls

2 W %5 Y-
Process Concept IR R

m An operating system concurrently executes a variety
Of programs (e.g Web browser, text editor, etc)
> Program — Passive entity: binary stored in disk

» Process — active entity: a program in execution in memory

m A process includes:
» Code segment (text section)
» Data section— global variables
» Stack —temporary local variables and functions
» Heap —dynamic allocated variables or classes
» Current activity (program counter, register contents)
» A set of associated resources (e.g. open file handlers)

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab Rl

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 25/136

1/29/23, 4:33 PM Memo_OS_20230129

. LIRSl g
Process in Memory
max 1
StaCk e temp_orary data (e.g.
function parameters,
return addresses,
l local variables)
+—— dynamic allocation
heap (e.g. class object,
pointer object)
data <+——global variables
text N code
0 |
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 5

- PCB(Process Control Block)

Process Table
PID PCB
1 .
2 o Process Control Block
: = Program counter
n Registers
Process Control Bleck
» State
Pm-gir:m counter Priority
Process Control Block x;’m Address space
| Program counter o Open files
Registers :
== Mdrevs spove Other flags
Priority :
Address space Other flags
Open files
Other flags

PROCESS CONTROL BLOCK (PCB)

Facilities for process #==y= Pointer | Process state

Process ID =ty Unique 1D

Program counter ey NeXxt Program that run

Register’s

Memory Limits

Accounting =ty Log INFO about Process

List of open file

PCB Diagram

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 26/136

1/29/23, 4:33 PM Memo_OS_20230129

Process Control Block (PCB)

1514 9870542210
LPU Status (Sharable = 1)
Brother Link |
Running]
ProcessID " Unused [LJP['J Paused 1
5 nput-Wait 3
; Unusad Message ID | State Ended 4
- L-DB - - Interrupted &
ror Bit -- !
e Buffer Polnter — *, N, Heald 1
— . Shald 2
Father Link \, Ready 3
’ Blocked 4
Message Waord Complete)
Suspend (&)
Process Entry Paint Son Blocked 7
LPU 1x
Son Link Son Process 2K
' Son Complete 4
Father Process 20X
Data Block Link
Al Bl L Interrupt Service 10X
Quene Link

Process State Flow

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 27/136

1/29/23, 4:33 PM Memo_OS_20230129

Process Management

admitted

scheduler dispatch

interrupt

exit

I/O or event completion 1/O or event wait

waiting

Process States

*New- The process is being created.

*Running- Instructions are being executed.

*Waiting- The process is waiting for some event to occur.

*Ready- The process is waiting to be assigned to a processor.
*Terminated- The process has finished execution.

Process Control Block- contains all information associated with a specific
process like process state, program counter, CPU registers and info
regarding CPU scheduling algorithms, memory, 1/0 and accounting.

- Scheduling

SHORT-TERM
LONG-TERM

Schedule)
Dispatch

Created Completion

Susperded
MIDDLE-TERM completion
Re'sume

SUSPENDED
READY
Suspendgd

completion b
but still in
suspended

1/0 rgfquest

MIDDLE-TERM

Resume

BLOCKED
SUSPENDED

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 28/136

1/29/23, 4:33 PM

Memo_OS_20230129

—

Job or Long Term .
Job Pool scheduler Swapin } Swap out
or Page in Medium Term or Page out
D D D D ‘ | Scheduler T
VB
Ready Queue Terminate
(In Memory)
{ CPU
L PRGN §
Short Term
Scheduler

Child executes Forka child

|

1/0 or Device
1/O Queue

Device i i i i

1/0 request %—

Interrupt Wait for
occurred interrupt

Schedulers BRI

m Short-term scheduler (CPU scheduler)- selects which process
should be executed and allocated CPU (Ready state =» Run state)

m Long-term scheduler (job scheduler) — selects which processes
should be loaded into memory and brought into the ready queue
(New state =» Ready state)

® Medium-term scheduler — selects which processes should be
swapped in/out memory (Ready state =» Wait state)

ob Scheduling
CPU Scheduling Operating System < Disk__ >
Job1 oo) |)
job2 Ees
Job3 &
Job4
Memory R PP Job pool
Chapter3 Processes Concept Operating System Concepts ~ NTHU LSA Lab 18
" JEE— s
- CE B

Long-Term Scheduler

m Control degree of multiprogramming

m Execute less frequently (e.g. invoked only when a
process leaves the system or once several minutes)

m Select a good mix of CPU-bound & I/O-bound
processes to increase system overall performance

m UNIX/NT: no long-term scheduler
> Created process placed in memory for short-term scheduler

> Multiprogramming degree is bounded by hardware
limitation (e.g., # of terminals) or on the self-adjusting
nature of users

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 19

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

29/136

1/29/23, 4:33 PM Memo_OS_20230129
" JEE s
. LIl g g
Short-Term Scheduler
m Execute quite frequently (e.g. once per 100ms)

m Must be efficient:

> if 10 ms for picking a job, 100 ms for such a pick,
=>» overhead =10/ 110 = 9%

long-term short-term

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 20

* SN =
u &= $ x4
Medium-Term Scheduler

m swap out: removing processes from memory to reduce
the degree of multiprogramming

m swap in: reintroducing swap-out processes into memory
m Purpose:improve process mix ,free up memory

m Most modern OS doesn’t have medium-term scheduler
because having sufficient physical memory or using
virtual memory

swap in partially swap out
swapped-out processes
ready queue] { cpPu E‘ end
VO waiting
queues
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 21
L 3
CAES

Process Scheduling Diagram

~———3[readv queve}} r@—
time slice
expired
— - G — [—
wait for an
occurs interrupt

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 17

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

30/136

1/29/23, 4:33 PM

Memo_OS_20230129

Differentiate between short term and long term scheduler.

e

e E———

{**Note: Any other relevant difference shall be considered**}

Sr. Short term scheduler Long term scheduler
No L~ _
A" | Itisa CPU scheduler “ It is a job scheduler

It selects processes from ready
queue which are ready to
execute and allocates CPU to

It selects processes from job pool and loads
them into memory for execution.
———

one of them. = —

3 Access ready queue and CPU.

Access job pool and ready queue

|

It executes frequently. 1It| It executes much less

for allocation. | — accommodate new process.

frequently.
executes when CPU is available | executes when memory has space to

Speed is fast

Speed is less than short term scheduler

degree of multiprogramming

It provides lesser control over | It controls the degree of multiprogramming

- Context Switch

CPU Switch from Process to Process

Process 0 Process 1
executing |
N | Save state into PCB,
.
. idle
.
Reload state from PCB, |
ridle Interrupt or system call executing
Save stm_
.
(]
idle
°
| Reload state from PCB,
executing | —

Context Switch

m Context Switch: Kernel saves the state of the old

CIE S

process and loads the saved state for the new process

m Context-switch time is purely overhead
m Switch time (about 1~1000 ms) depends on
» memory speed
» number of registers
» existence of special instructions
+ asingle instruction to save/load all registers
» hardware support

+ multiple sets of registers (Sun UltraSPARC — a context

switch means changing register file pointer)

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab

1

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

31/136

1/29/23, 4:33 PM

KernelLand

User mode
Context of A

UserLand

Switch

Memo_OS_20230129

Context Switch

restore

User mode
Context of B

Schedule

| Scheduler [Swiiehioq]|

gernelmode

| Trap/Handler |

_i Handler (s |

User model | -
Process 1 ff You are here -I—v‘ Process 2 |
| interrupt, syseall, signal, faul, et iret | |

CPU Scheduling

K_/Rv

Preemptive Non-Preemptive

|

R

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Priority th_a(:r?gi(r?l?r:g Shortest Longest
i Job First Job First \'
Scheduling Job First v/
First- Highest
= REesponse
Shortest Round- Come thio
Remajning Robin First- Rikeh
Job First Serve

32/136

1/29/23, 4:33 PM

Memo_OS_20230129

Highest Priority

FCFS — —>

System Process

SJF Foreground Process

RR —,

Background Process '

e Student Process

created by Nptes Jam

Lowest Priority

CPU SCHEDULING CRITERIA

o CPU Utilization: Percent of time that the CPU is
busy executing a process.

o Throughput: Number of processes executed per
unit time.

o Turnaround Time: The interval of time between
submission of a process and its completion.

o Waiting Time: The amount of time the process
spends in the ready queue waiting for the CPU.

o Response Time: The time between submission
of requests and first response to the request.

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

33/136

1/29/23, 4:33 PM Memo_OS_20230129

v
| Round Robin(RR)

\' o Each process is allotted a time slot(q). After this
' '~ time has elapsed, the process is pre-empted and
added to the end of the ready queue.

[
\
=

" Performance of the round robin algorithm
> g large = FCFS

> g small 2 ¢ must be greater than the context
switch time; otherwise, the overhead is too high

Process P1 gets executed second Process P2 gets executed last
as it has the burst time of 6 which is as it has the largest burst time of 8
= larger than P4 but shorter than P2 and P3 which is larger than P4, P1 and P3
Process - e -
Time Therefore Waiting time (P1) =3 Therefore Waiting time (P2) = 16
P1 6
012 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24
L p2 8 | I |
) -
— P3 7
P4 3 £
Process P4 gets executed first Proce‘ss P3 gets execgted third
as it has the shortest burst time of 3 as it has the burst time of 7
which is larger than P4 and P1
Therefore Waiting time (P1) = 0 o ’
Therefore Waiting time (P3) =9

ROUND ROBIN SCHEDULING

s o)
P1 642
P2 531

= gl
P4 ,5/1/ 12 14 Q15 17 19 20 23

P5 75

Given T;":‘f‘:,?s“a"t”m NOTE : Assume that all th@&
Processes arrives at t =

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 34/136

1/29/23, 4:33 PM Memo_0OS_20230129
CPU Scheduling (40 points)

Process | Burst Time | Priority | Arrival Time
P1 12 3 0
P2 6 4 2
P3 4 1 4
P4 18 2 6

Table 1: Process Information.

Consider the processes described in Table 1.

Questions: What is the average waiting time of those processes for each of the following
scheduling algorithms? (Draw a Gantt chart for each algorithm.)

(a) First Come First Serve (FCFS)
(b) Non-preemptive Shortest Job First (NP-SJF)
(c} Preemptive ShortestlJob First (P-SJF)
(d) Priority Scheduling
(e) Round Robin, with the following assumptions:
Assumption (1). The scheduling time quantum is 5 time units.

Assumption (2). If a new process arrives at the same time as the time slice of the
executing process expires, the OS puts the executing process in the
ready queue, followed by the new process.

Question 3: Consider the following set of processes, their arrival times, length of the CPU burst
time given in milliseconds:

Process | Arrival Time| Burst Time| Priority

P1 1 12 3
P2 2 3 1
P3 2 16 4
P4 3 10 2
P5 7 1 1

Let us schedule the execution of these processes using the following scheduling
algorithms: First Come First Served (FCFS), Shortest Job First (SJF), Round Robin (RR), and a
new type of scheduling algorithm called non-preemptive priority scheduling. The following
are the assumptions:

1) Larger priority number implies higher priority
2) Assume the quantum (aka time slice) of 2 for RR algorithm

3) Non-Preemptive means once scheduled, a process cannot be preempted (i.e. it runs
to completion).

3a [10 points] What is the response (completion) time of each process for each of the
scheduling algorithms. Write the times in the table below.

FCFS SIF Priority RR

P1
P2
P3
P4
P5

3b [10 points] Which of the above methods results in the longest average wait time. Show
calculations and explain.

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 35/136

1/29/23, 4:33 PM Memo_OS_20230129

-
T
Approximate Shortest-Job-First (SJF)

m SJF difficulty: no way to know length of the
next CPU burst

m Approximate SJF: the next burst can be
predicted as an exponential average of the
measured length of previous CPU bursts

T gyl =0 1, + (1 —a) ,~——nhistory

new one

Commonly,

a=12—"

Chapter§ Process S

Priority Scheduling

m A priority number is associated with each process
m The CPU is allocated to the highest priority process
> Preemptive
> Non-preemptive
m SIF is a priority scheduling where priority is the
predicted next CPU burst time
m Problem: starvation (low priority processes never
execute)
> e.g. IBM 7094 shutdown at 1973, a 1967-process never run)
m Solution: aging (as time progresses increase the priority
of processes)

» e.g. increase pri
Chaptor5 Process Schaduling

Evaluation Methods 8l g

m Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each algorithm for that workloat

» Cannot be generalized

m Queueing model — mathematical analysis

m Simulation — random-number generator or trace
tapes for workload generation

m Implementation — the only completely accurate
for algorithm evaluation

Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 36/136

1/29/23, 4:33 PM Memo_OS_20230129

' EAES & o

Processor affinity

m Processor affinity: a process has an affinity for
the processor on which it is currently running
> A process populates its recent used data in cache
memory of its running processor
> Cache invalidation and repopulation has high cost

m Solution
> soft affinity:
+ possible to migrate
between processors
> hard affinity: . ;
+ not to migrate to other | \" (=11 ’ |
processor
Chapter5 Process Scheduling Operating System Concepts ~ NTHU LSA Lab 40

SN GRS P

NUMA and CPU Scheduling

® NUMA (non-uniform memory access):

» Occurs in systems containing combined CPU and
memory boards

» CPU scheduler and memory-placement works togethe

> A process (assigned affinity to a CPU) can be allocatec
memory on the board where that CPU resides

cPU CcPU

\ -
fast access % J fast access
A

computer

Chapter5 Process Scheduling Operating System Concepts - NTHU LSA Lab a1

* E— & =tk %

Load-balancing

m Keep the workload evenly distributed across all
processors
> Only necessary on systems where each processor has its

le processes to execute

o]

own private queue of eligit

m Two strategies:

» Push migration move (push) processes from overloaded

» Pull migration

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 37/136

1/29/23, 4:33 PM Memo_OS_20230129

' &= ¥ g

Multi-core Processor Scheduling

m Multi-core Processor:
> Faster and consume less power
> memory stall: When access memory, it spends a significant
amount of time waiting for the data become available. (e.g.
cache miss)
m Multi-threaded multi-core systems:
> Two (or more) hardware threads are assigned to each core
(i.e. Intel Hyper-threading)

> Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

] compute cycle I M memory stall cycle

—teet . [T TR o [N o [RGE| o (M|
e [c [w[e[wm[e[w]e]
s~ e TRl R) “
" JEE—— & = ¥

Real-Time Scheduling

m Real-time does not mean speed, but keeping
deadlines
m Soft real-time requirements:

> Missing the deadline is unwanted, but is not
immediately critical

> Examples: multimedia streaming

m Hard real-time requirements:
> Missing the deadline results in a fundamental failure
> Examples: nuclear power plant controller

Chapler5 Process Scheduling Operating System Concepts - NTHU LSA Lab 45

"
Real-Time Scheduling Algorithms

m FCFS scheduling algorithm — Non-RTS
» T1=(0, 4, 10) == (Ready, Execution, Period)
»>T12=(1,2,4)

m Rate-Monotonic (RM) algorithm

» Shorter period=» higher priority

-Deadlock

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 38/136

1/29/23, 4:33 PM Memo_OS_20230129

/ Resource |1

e Deadlock in OS Process 2

\ Resource 2

Deadlock Characterization

D/

Deadlock can arise if four conditions hold simultaneously.

® Mutual exclusion: only one process at a time can use a
resource

m Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

m No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

m Circular wait: there exists a set {P,, P;, ..., P,} of waiting

processes such that P, is waiting for a resource that is held by P,
P, is waiting for a resource that is held by

Ps, ..., P, is waiting for a resource that is held by P,, and P, is
waiting for a resource that is held by P,.

7.5

- Resource Allocation Graph

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 39/136

1/29/23, 4:33 PM Memo_OS_20230129

Resource-Allocation Graph: Definition

A set of vertices V and a set of edges E.

o V is partitioned into two types:

= P={P,, P, ..., P}, the set consisting of all
the processes in the system.

= R={R,, R,, ..., R,}, the set consisting of all
resource types in the system.

O request edge — directed edge P, — R;
O assignment edge — directed edge R, — P;

The resource-allocation graph is therefore a
bipartite directed graph. What would be the
graph representing the bridge-crossing
example?

>

q

Operating System Concepts with Java — 7™ Edition, Nov 15, 2006 7.8 Silberschatz, Galvin and Gagne ©2007

@~

Jenny's Lectures y 9
Somsigm e teeron o X

. ¢ I

» JENNY'S LEGTURES CS/IT NET&JRF for full

Jenny's Lectures
S S ewon ey

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

40/136

1/29/23, 4:33 PM Memo_OS_20230129
Resource Allocation Graph

* Process O

+ Reasource type with 2 instances Ii'

= Pireguests instance of Rj &
+ Aninstance of Rj is allocated to Pi Ri

« Agraphwith a deadlock

air Arrir Fall 004 Leciure 4

Resource Allocation Graph (cont.)

« Agraphwith a cycle but without a deadlock:

R1

& B @
A

+ |fthere are no cycles then there is no deadlock.
+ |Ifthere isa cycle:

— If there is only one instance perresource type then there
is a deadlock.

— If there is more than one instance for some resource
type, there may or may not be a deadlock.

Yair Amir Fall 007 Lecture 4

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Rt [o | = | R3
\f/ (P3)

41/136

1/29/23, 4:33 PM Memo_OS_20230129

Resource Allocation Graph Algorithm

A
POk ¥l POE ¥l
q__ Request glecand Fn 1'._ Request
“‘ - ’ . ’
-
a7
PoE it Fﬁgtellet?tl POk il Fﬁe‘ml'e‘ft'
Request El Reqlext a
Potestal
.qnocahed %
Pok vl [3pa
Request
Yair Amir Fall 007 Lecture 4 20

Thread hold Resource

o Thread request Resource

3 Thread hold or request
h Resource (either one)

(i$sue resource)

issue IssueQ/

BW ROB £k

traceQ

Resource Allocation Graph With A
Cycle But No Deadlock

‘ P2 ‘
! /"Q = |f graph contains no

R
g cycles = no
""-\/P— deadlock.

2 = If graph contains a

P, cycle =%

o if only one instance
R, per resource type,
5 then deadlock.
o o if several instances
T~ per resource type,
@ possibility of

deadlock.

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 42/136

1/29/23, 4:33 PM Memo_OS_20230129

\\
\
ﬁi\ oo

[6 pts] Fill in the resource matrix according to the graph above:

4

RO R1
o ® o

Allocation Need Available
RO R1 R2 R3 RO R1 R2 R3 RO R1 R2 R3
PO
P1
P2
P3

Approaches to Deadlock Prevention

—

L -Condifio-n [Approacﬁ _
Mutual exclus:on Spool everythlng |
Hold and wait } Request all resources |n|t|ally

. No preemption | - Take resources away

iCir-cu.Iar"vJai.t“ o j Order resources numer.ibally

Figure 6-14. Summary of approaches to deadlock prevention.

lanenbaum, Modem Opemting Systemns 3 e, {¢) 2008 Prentice-Hall, Inc. All nghts reserved. (- 13-60066 39

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

43/136

1/29/23, 4:33 PM

®

L

L]

[]

[]

Memo_OS_20230129

Deadlock Avoidance

Deadlock avoidance is a technique used to avoid
deadlock.

It requires information about how different processes
would request different resources.

Safe state: if deadlock not occur then safe state.
Unsafe state: if deadlock occur then unsafe state.

The idea of avoiding a deadlock is simply not allow the
system to enter an unsafe state the may cause a

deadlock. S

3.5 Deadlock Detection

+ If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occur.
* In this environment, the system may provide:

+ An algorithm that examines the state of the system to determine whether a
deadlock has occurred.

* An algorithm to recover from the deadlock.

* Single Instance of Each Resource Type.

- Several Instances of a Resource Type.

* When should we invoke the detection algorithm?

* The answer depends on two factors:

1. How oftenis a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

The Difference Between Deadlock
Prevention and Deadlock Avoidance

+ Deadlock Prevention:

+ Deadlock Avoidance:

] =

Simitar to the difference betweean a traffic light
and a police oMcer directing {raffic
air Arrar Fall 00/ Leciure 4

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

44/136

1/29/23, 4:33 PM

Comparsion Deadlock
* Dafinition ® Deadlock odcurs when none of the
processes o the set i3 able to mowve
akead due to ocoupancy of the required
resources by some other process Ov
Deadiack s where no process proceads,
and get blocked

* Other nama * Circular wating

& These fouar ponditians ariEng
conditions wmauttaneously - miutusl enclusion, hold
and wait, ne-presmpnon and ciroular wit

* Awoidance| ® infiite rescurces, Wading s not
pravention allowed, Shanng s not allowsd,
Technigues Preempt the resources, All Requests

made at the startng

i Handling Deadlocks

Memo_OS_20230129

Starvation

*® Starvation o<curs when o process waits for -
an ndefinite pericd of tme to get the =
resoures it requires. Or Stanvation is whers -

lew priceity processes get blocked, and
high prianity pracess procesds

Liwed lock

Uncontrofied mansgermnent of resources, ©
Process priorties being - strictly enforces =
Use of rendom sebection, Scaxity of

resaCes

BeltwoenMates.com

&l = ¥ x4

m Ensure the system will never enter a deadlock state
» deadlock prevention: ensure that at least one of the 4

necessary conditions cannot hold

> deadlock avoidance: dynamically examines the
resource-allocation state before allocation

m Allow to enter a deadlock state and then recover

> deadlock detection
> deadlock recovery

m Ignore the problem and pretend that deadlocks

never occur in the system

> used by most operating systems, including UNIX.

-!,._.—,
Deadlock Recovery

m Process termination

is eliminated

Bankers' Algorithm

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

CIEN S P

> abort all deadlocked processes
»abort 1 process at a time until the deadlock cycle

45/136

1/29/23, 4:33 PM Memo_OS_20230129

The banker’s algorithm

« A state is safe iff there exists a sequence
{P1..Pn} where each Pi is allocated all of its
needed resources to be run to completion

& i.e.: we can always run all the processes to
completion from a safe state

= The safety algorithm is the part that
determines if a state is safe

« Initialization:
+ all processes are said to be “unfinished”

¢ set the work vector to the amount resources
available: W(i) = V(i) for all i;

Banker’s Algorithm

1. Look for a new row in R which is smaller
than A. If no such row exists the system will
eventually deadlock =» not safe.

2. If such a row exists, the process may finish.
mark that process (row) as terminate and add
all of its resources to A.

3. Repeat Steps 1 and 2 until all rows are
marked =» safe state

If some are not marked = not safe.

30

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 46/136

1/29/23, 4:33 PM

Memo_OS_20230129

Example of Banker’s Algorithm

Allocation Need Available
ABC ABC ABC
PO 010 PO 743 332
P1 200 P1 122
P2 302 P2 600
P3 211 P3 011
P4 002 P4 431

Try to find a row in Need; that is <= Available.

P1;
P3.
P4.
P2.
PO.

run completion. Available becomes =[332] +[200] =[5 3 2]
run completion. Available becomes =[532] +[21 1] =[7 4 3]
run completion. Available becomes = [74 3] +[00 2] =[7 4 5]
run completion. Available becomes =[74 5]+ [302] =[104 7]
run completion. Available becomes =[104 7]+ [010]=[1057]

We found a sequence of execution: P1, P3, P4, P2, P0. State is safe

40

- Banker's Algorithm for a single resource

Has Max

6

0
0
0

=N NN~

]

5
4
7

Any sequence finishes

Free: 10

Has Max

b | — | —

2o

4

R RN R}

Free: 2
C.B.A.D finishes

Has Max

1
2
2

=N NN~

4

Free: 1
Deadlock (unsafe state)

m Bankers” algorithm: before granting a request, ensure that a
sequence exists that will allow all processes to complete

Use previous methods to find such a sequence

If a sequence exists, allow the requests

If there’s no such sequence, deny the request
m Can be slow: must be done on each request!

1. Using the banker’s algorithm, determine whether the following state is unsafe based on
the snapshot of the system below. If the state is safe, provide a safe sequence of
execution. Otherwise explain why it is unsafe. Show your calculations for full credit.

Allocation
A B C D
Po 3 01 4
Py 2 21 0
P2 3 1 2 1
] 0 51 0
Ps 4 2 1 2

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Max (Demand)

Ak wwun >

w o wWwmN = m

t

N RN R

(50 SR TN v

[10 points]

Available = (1,0, 0, 2)

47/136

1/29/23, 4:33 PM Memo_OS_20230129

Sample question (bankers algorithm)

Allocation Max Nead Available

3221

A BCD ABCD A B CTD ABCD
i2t] 4 01 T 0021
Pl 11 00 1 6 5 0
|7 1 0 4 3 313 4 06
P3 o 4 21 1 5 6 2
P4 031 2 14 32

Using Bankers algorithm answer the following:

-

How many resources of type A, B, C and D are there?

2. What are the contents of the Need matrix?

3. Is the system in a safe state? Provide reasoning for your answer (show the
sequence in which the processes would finish)

4. If a request from process P2 arrives for additional resources of {0, 2, 0, 0},

can the Bankers algorithm grant the request immediately? Provide reasoning

for your answer. (14 Marks)

Ql. Deadlocks. The Banker's algorithm is used for deadlock avoidance. Consider the state of resource
availability and allocation defined by the following matrices.

Claim Matrix Allocation Matrix
R1 R2 R3 R1 R2 R3
P1 3 1 4 P1 2 1 1
P2 6 1 3 P2 5 1 1
P3 3 2 2 P3 2 0 1
P4 4 2 2 P4] 0 2

(1

Assuming that the total amounts for resources R1, R2, and R3 are 10, 2, and 10, should a new
request to the Banker’s algorithm by process P3 to acquire one additional resource from R1 and
one additional resource from R3 be approved or denied? Explain why or why not.

(2

Assuming that the total amounts for resources R1, R2, and R3 are 10, 2, and 10, should a new
request to the Banker’s algorithm by process P4 to acquire one additional resource from R3 be
approved or denied? Explain why or why not.

(3

Assuming that the total amounts for resources R1 and R2 are 10 and 2, what is the minimum
amount for resource R3 that would render the above state a safe state under the Banker's
algorithm?

(4

Given your answer for part (3) what are all the possible orderings for the four processes P1, P2,
P3, and P4 to complete their execution subject to the Banker’s algorithm.

(5

Assuming that the total amounts for resources R1 and R2 are 10 and 2, what is the minimum
amount for resource R3 that would make it possible for the Banker’s algorithm to allow process
P1 to complete its execution before all other three processes?

The Banker’s Algorithm

e Idea: know what
each process
might ask for

* Only make
allocations that
leave the system
in a safe state

¢ Inefficient

deadlock

unsafe

Resource allocation
state space

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 48/136

1/29/23, 4:33 PM

Memo_OS_20230129

Jenny's Lectures
ety Sy vt

Jenny's Lectures
proere Auyfemet Rbwti

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

49/136

1/29/23, 4:33 PM

|A((hlorb (Max | Availple | Neesl
\HBCD%Q",M‘J" (PR C /
r”oi:"Lazlfﬁi‘“:&H'

Jensisctue |3 | 2)Tt 2131
P o5 S ° 213
P;I}I'-(r"‘i”‘ S 1
Pq‘{ yagals eeé la 233
*q 9464

ﬁ%omi\c e-f‘(q"&“’ -
sk 1} Repuoks < e s gk dep o
oHeawhe emen
S@_ttl IF @ b < Availsble Hhen § - d(rl
OH\&LuuL J wail\ wait
gci S‘a‘akm Fa-d-o\d %xL muq,l' g been T\MM
a mo&%l e 44«4& ag fllowsy

ﬂ"‘l«t\-\hlg — = Repuutp
Allecalens 4= Rtj““

(»Lc\'\ = Kt\ uagte

‘f medili ed A@roUce~ q|l<cﬂ’w‘« Afde U u:(_(
hen rﬁ{uv\} Az nhed

oheawde P will vt & old alloehe,

Memo_OS_20230129

D Need Matis? es
U L*":"f(m,\ﬂ SQofe sieht /1 U
3 rejuest from £ Aoy vEs -j'“
(an T¥ est be
cnked 7
— T e yes ¥ o aOM Ve oy
y - 8 |

o 0,0,2,) G} be imeedal
- .
—

Alde U vestord

|

|
Jenny's Lectures
S

st Teermoa:

oy |

\J

Sma le TM#NQ

(umx-!}rmﬂ
(Setectcacle)

Allows the dietem do enken into deadlocked 4k
Deadloek dekechon QQ.aaranma ('l/“'/d["i)

Mul»h'f/e rafances

[Rankers nﬂa@\

Jennys LEctures
ey i

fretmﬁm 4 /%AOW% & IT"CW%

L (Jre.gm{ﬁ Aome Aegouies T-)
"l 2 aive there reqooneh =

rm,_,y: &
men UnBl the

X

other p7rcs

MLl

(fd;\v{a vichm)
llback 7

([rocess Tuminqql-'aniv A
[, Abort a2 deadlocked Procenes

Pbort one precen of o fime and
decide next+ abovt c-({»u cleadleck

detection

a
| cali
oveAhead hﬁ'
delechen Sy “'{“"‘&’
LTV
s will Gmpylke befse Nm‘ |

Yoy

Process Create

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

50/136

1/29/23, 4:33 PM Memo_OS_20230129

" A
Process Creation

* SN

: . I
UNIX/Linux Process Creation

m fork system call

» Create a new (child) process

» The new process duplicates the address space of its parent

» Child & Parent execute concurrently after fork

» Child: return value of fork is 0

» Parent: return value of fork is PID of the child process
m execlp system call

» Load a new binary file into memory — destroying the old code
® wait system call

» The parent waits for one of its child processes to complete

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 25

"

EAES
UNIX/Linux Process Creation

m Memory space of fork():
» Old implementation: A’s child is an exact copy of parent

> Current implementation: use copy-on-write technique to
store differences in A’s child address space

free memory
free memory free memory .
A's child
free memory free memory free memory
A A A
~ kernel L= nel ~ kernel
Originally After A does After the child
an fork does an execlp
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 26

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 51/136

1/29/23, 4:33 PM Memo_OS_20230129

UNIX/Linux Example

#include <std

void mair

Process Termination

m Terminate when the last statement i
exit() is called

» All resol

m Par

IPC(Interprocess Communication)

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 52/136

1/29/23, 4:33 PM Memo_OS_20230129

Interprocess Communication
Interoperability

Resource Friendly Accessibility

Performance \ / Availability
I Process A -« Interacts I Process B \

Recoverability /

Monitorability

Reliability Scalability

Security

Interprocess Communication

m |PC: a set of methods for the excha
among mult threads ir
m Independent proces

other proce

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 53/136

1/29/23, 4:33 PM

IPC classified by implementation mechanisms.

---------------------------------*- More efficient

Examples:

files

4. Interprocess Communication contd..

Memo_OS_20230129

IPC Mechanisms

semaphore, socket,
pipe, message queue,

signal

+ Two fundamental models of Interprocess communication
+ Shared memory

* a region of memory that is shared by cooperating processes is established then

shared memory

exchange information takes place by reading and writing data to the shared region
* Message passing

* communication takes place by means of messages exchanged between the

cooperating processes

process A

[

processe [|

Message passing

kernel

Mg

Communication Methods

(a)

m Shared memory:

»

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Require mor

process A

shared

process B

il

kernel

ha

Shared memory

54/136

1/29/23, 4:33 PM Memo_OS_20230129

Shared Memory

m Processes are responsible for
» Establishing are

" & =tk ¥ 1

Consumer & Producer Problem

m Producer process produces information that is
consumed by a Consumer process

m Buffer as a circular array with size B

> next free: in out

» first available: out

» empty: in = out in —
> full: (in+1) % B = out

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 37
" S ;
W I
Shared-Memory Solution
/*producer*/
while (1) { =
while (((in + 1) % BUFFER_SIZE) == out)
; //wait if buffer is full in— — out
buffer[in] = nextProduced; " =
in = (in + 1) % BUFFER_SIZE; /* global data structure */
} #define BUFSIZE 10
" . item buffer[BUFSIZE];
/*consumer*/ int in = out = 0;
while (1) {
while (in == out); //wait if buffer is empty
nextConsumed = buffer[out];
: out = (out + 1) % BUFFER_SIZE; in— — out
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 38

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 55/136

1/29/23, 4:33 PM Memo_OS_20230129

- S PN &

Message-Passing System

m Mechanism for processes to communicate and
synchronize their actions

m |PC facility provides two operations:

» Send(message) — message size fixed or variable

ocesses communicate without

8t
Message-Passing System

m Implementation of communication link
» physical (e.g., shared memory, HW bus, or network

> logical (e.g., logical properties)
+ Direct or indirect communication
+ Symmetric or asymmetric communication
+ Blocking or non-blocking '
+ Automatic or explicit buffering
+ Send by copy or send by reference
+ Fixed-sized or variable-sized messages

* N & =1 ¥ x

Message-Passing System

m Mechanism for processes to communicate and
synchronize their actions

m |PC facility provides two operations:
» Send(message) — message size fixed or variable

» Receive(rr

ate without

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

56/136

1/29/23, 4:33 PM Memo_OS_20230129

Communication Methods

m Sockets:

+«— Socket interface —

Network Network
stack (0S) stack (0S)
CIEN S P

Sockets |
m Considered as a low-level form of communication
unstructured stream of bytes to be exchanged

m Data parsing responsibility falls upon the server and
the client applications

I
HTTP example:

Clien HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT !
Server: Apache/1.3.3.7 !

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Serv

GET /index.htm| HTTP/1.1
Host: www.example.com

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 57/136

1/29/23, 4:33 PM Memo_OS_20230129

" BN
Sockets

Server
m A socket is identified by a (161.25.19.8)
concatenation of IP address
and port number
m Communication consists
between a pair of sockets
m Use 127.0.0.1 to refer itself

J socket() |

Client
(146.86.5.20)
" Socket
4148.86.5.20:1625)

" Remote Procedure Calls: RPC &= # x4

m Remote procedure call (RPC) abstracts procedure
calls between processes on networked systems

r alit;,\h‘;)"“,v" ms 10O prc r . ted on other

nacnine

- Client and Server Stubs CAENS 8 P

Client stub:
*Packs parameters into a messag
*Calls OS to send directly to the

*\Waits for result

e. parameter marshaling)

Client

Threads

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

58/136

1/29/23, 4:33 PM Memo_OS_20230129

Thread Control Block

* Thread Control Block (TCB) is a data structure in the operating system kernel
which contains thread-specific information needed to manage it. The TCB is "the
manifestation of a thread in an operating system".

* An example of information contained within a TCB is:

¢ Stack pointer: Points to thread's stack in the process

* Program counter

* State of the thread (running, ready, waiting, start, done)

* Thread's register values

* Pointer to the Process control block (PCB) of the process that the thread lives on

The Thread Control Block acts as a library of information about the threads in a
system. Specific information is stored in the thread control block highlighting
important information about each thread.

Threads MR

fles

m A.k.a lightweight process:
basic unit of CPU utilization [EI E]

code
m All threads belonging to the E -
same process share E]

]

3‘— Pread

» code section, data section,
and OS resources (e.g. open
files and signals) m_,g

~~ (&) R[]

m But each thread has its own

» thread ID, program counter,
register set, and a stack

Chapter3 Processes Concept Operating System Concepts ~ NTHU LSA Lab 6

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 59/136

1/29/23, 4:33 PM Memo_OS_20230129

DATA

multiple processes
one thread per process

multiple processes
multiple threads per process

e

5 = instruction trace

Figure 4.1 Threads and Processes [ANDE97]

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 60/136

1/29/23, 4:33 PM Memo_OS_20230129

o~

It is lightweight entity.
If a thread ends working process keep working.
Communication b/w threads happens via memory.

The Creation of thread and context switching is
inexpensive

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

It is heavy weight entity

Process may keep working and if a process
terminates all its threads will terminate also.

Communication b/w Process happens via OS.

The creation of the process is expensive.

61/136

1/29/23, 4:33 PM Memo_OS_20230129

' '
& = ¥ x4

Motivation

m Example: a web browser

» One thread displays contents while the other thread
receives data from network

m Example: a web server
» One request / process: poor performance

» One request / thread: better performance as code and
resource sharing

m Example: RPC server

» One RPC request / thread
(2) create new
(1) request thread to service

the request Ji]

When a request is issued,
creates (or notifies) a thread

3) resume listenin
to serve the request. () Iheuime istecing
Chapterd Mc client requests 4
' JE— s
EAEN

Benefits of Multithreading

m Responsiveness: allow a program to continue running
even if part of it is blocked or is performing a lengthy
operation

m Resource sharing: several different threads of activity
all within the same address space

m Utilization of MP arch.: Several thread may be running
in parallel on different processors

m Economy: Allocating memory and resources for process
creation is costly. In Solaris, creating a process is about
30 times slower than is creating a thread, and context
switching is about five times slower. A register set
switch is still required, but no memory-management
related work is needed

Chapterd Multithreaded Operating System Concepts ~ NTHU LSA Lab 5

Challenges in Multicore Programming

S . :
' & =1 # <4

m Dividing activities: divide program into
concurrent tasks

m Data splitting: divide data accessed and
manipulated by the tasks

m Data dependency: synchronize data access
m Balance: evenly distribute tasks to cores

m Testing and debugging

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 8

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 62/136

1/29/23, 4:33 PM Memo_OS_20230129

' S &5tk ¥
User vs. Kernel Threads

m User threads — thread management done by user-
level threads library
» POSIX Pthreads
» Win32 threads
» Java threads
m Kernel threads — supported by the kernel (OS)
directly
» Windows 2000 (NT)
» Solaris
» Linux
» Tru64 UNIX

Chapterd Multithreaded Operating System Concepts — NTHU LSA Lab 9

' S 3 :
B CIE S
User vs. Kernel Threads

m User threads

» Thread library provides support for thread creation,
scheduling, and deletion

> Generally fast to create and manage
» If the kernel is single-threaded, a user-thread blocks =»
entire process blocks even if other threads are ready to
run
m Kernel threads
» The kernel performs thread creation, scheduling, etc.
» Generally slower to create and manage

» If athread is blocked, the kernel can schedule another
thread for execution

Chapterd Multithreaded Operating System Concepts — NTHU LSA Lab 10

' S ‘ &2tk %
Shared-Memory Programming

u Definition: Processes communicate or work together
with each other through a shared memory space
which can be accessed by all processes

» Faster & more efficient than message passing

® Many issues as well

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 63/136

1/29/23, 4:33 PM Memo_OS_20230129

" S
What is Pthread?

m Historically, hardware vendors have implemented
their own proprietary versions of threads
u (Potable Operating “ystem Interface)

standard is specified for portability across Unix-like

Pthread Creation s

m pthread_create(thread,attr,routine,arg)
> thread: An unique identifier (token) for the new thread
> attr: Itis used to set thread attributes. NULL for the default value:
> routine: The routine that the thread will execute once it is create«
> arg: A single argument that may be passed to routine
main .program thread1

pthread_create(&thread1, NULL, funct, &arg); ———> (unc(8ara) {

o : (____________—retum('status)
pthread_join(thread1, *status); }

Chapter4 Multithreaded *Operating System Concepts - NTHU LSA Lab 19

= > YouTube operating system

m pthread_join(threadld, status)
» Blocks until the specified threadld thread terminates
» One way to accomplish synchronization between threads
» Example: to create a pthread barrier
for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

m pthread_detach(threadld)
» Once a thread is detached, it can never be joined
> Detach a thread could free some system resources

Master
'_1.-_“/ - R et r)
I
Thread
DO WORK ——
Thread

pthread exit()|

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 64/136

1/29/23, 4:33 PM Memo_0OS_20230129
|

Semantics of fork() and exec() =

m Does fork() duplicate only the calling thread
or all threads?

» Some UNIX system support two versions of fork()

m execlp() works the same; replace the entire
process

> If exec() is called immediately after forking, then
0
12

duplicating all threads is unnecessary
PO PO P1 P P1
in iTz iTz i T2
" 26
1=
B) B = F x4
Signal Handling ¥

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab
m Signals (synchronous or asynchronous) are used in UN
systems to notify a process that an event has occurrec
» Synchronous: illegal memory access
» Asynchronous: <control-C>
m Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
m Options
» Deliver the signal to the thread to which the signal applies
» Deliver the signal to every thread in the process
» Deliver the signal to certain threads in the process

» Assign a specific thread to receive all signals for the process
Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 28

Thread Pools W s 2

m Create a number of threads in a pool where
they await work
m Advantages

» Usually slightly faster to service a request with an
existing thread than create a new thread

» Allows the number of threads in the application(s)
to be bound to the size of the pool

m # of threads: # of CPUs, expected # of
requests, amount of physical memory

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 29

Memory Management

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 65/136

1/29/23, 4:33 PM Memo_OS_20230129

" S &0

UNIVERSITY

Memory Management in OS

User Programs
User Interface
= —— = —_— o
System Calls System
File Memory Process . Network Power
Management | Management Management Management Management
g _ il B 3
Hardware

" S
Background

m Main memory and registers are the only storage
CPU can access directly

m Collection of processes are waiting on disk to be

ought into m

Source Code (.c, .cpp, .h]l

Preprocessing Step 1: Preprocessor (cpp)
Include Header, Expand Macro (.1, .1i)

Compilation ' Step 2: Compiler (gcc, g++)

Assembly Code[.s]l

Assemble Step 3: Assembler (as)
Machine Code (.0, .obj)

Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)

Executable Machine Code (. exe) I

0062015

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 66/136

1/29/23, 4:33 PM

other
object
modules

system
library

dynamicall
loaded
system
library
dynamic
linking

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Memo_OS_20230129

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

in-memory
binary
memory
image

compile
lime

. load
time

executior
= time (run
time)

67/136

1/29/23, 4:33 PM

Memo_OS_20230129

Address Binding — Compile Time &=H#x%
m Program is written as symbolic code

m Compiler translates symbolic code into absolute code

m [f starting location changes =»recompile

m Example: MS-DOS .COM format binary

int data; .BASE 0x1000
main() { START
data=3*7: PUSH AX 0x1000 | PUSH AX
print(data); MOVE ~ AX,3 MOVE AX,3
} MULT AX,7 MULT AX, 7
MOVE (0x1018), AX MOVE (0x1018), AX
CALL print, (0x1018) ox1010 | CALL print, (0x1018)
POP AX POP AX
END 0x1018
SPACE (4)
Source Program Disk Image Memory Content
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 6

Address Binding — Load Time 8 ¥ 1

m Compiler translates symbolic code into relocatable code
m Relocatable code:

» Machine language that can be run from any memory location
m [f starting location changes =» reload the code

int data; START
main() { PUSH AX
data=3*7: MOVE AX, 3 0x2000 | PUSH AX
print(data); MULT AX,7 MOVE AX,3
} MOVE (.BS+0x18), AX MULT AX,7
CALL print, (.BS+0x18) MOVE (0x2018), AX
POP AX 0x2010 | CALL print, (0x2018)
END POP AX
SPACE (4) 02018
Source Program Disk Image Memory Content
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 7

Address Binding — Execution Time &= #x%

m Compiler translates symbolic code into logical-address
(i.e. virtual-address) code

m Special hardware (i.e. MMU) is needed for this scheme

m Most general-purpose OS use this method

int data; START
main() { PUSH AX
data=3*7: MOVE AX, 3 0x2000 | PUSH AX
print(data); MULT AX,7 MOVE AX, 3 Virtual addr.
} MOVE (0x18), AX MULT AX, 7
CALL print, (0x18) MOVE (0x18), AX
POP AX 0x2010 | CALL print, (0x18)
END POP AX
SPACE (4) ;20“
Physical addr.

Source Program Disk Image Memory Content
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 8

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

68/136

1/29/23, 4:33 PM Memo_OS_20230129

-~ Memory-Management Unit (Mmu)

m Hardware device that maps virtual to physical address

® In MMU scheme, the value in the relocation regqister is
added to every address generated by a user process at
the time it is sent to memory

m The user program deals with /logical addresses; it never
sees the real physical addresses

relocation
register
logical physical
address m address
CPU + memory
346 \ / 14346

MMU

Dynamic relocation using a relocation register y

o
Operating System Concepts with Java - 8" Edition 88 Silberschatz, Galvin and Gagne ©2009

'.-', AR &
Logical vs. Physical Address

m Logical address — generated by CPU
>a.k.a. virtual address

m Physical address - seen by the memory
module

® compile-time & load-time address binding
>logical addr = physical addr

® Execution-time address b inding
>logical addr # physical A y

® The user pro
never sees

Chaptert Momory Managerr

JE
Dynamic Loading

m The entire program must be in memory for it to
execute?

m No, we can use dynamic-|

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

69/136

1/29/23, 4:33 PM

"
Static Linking

Memo_OS_20230129

" JEEEE
Dynamic Loading Example in C

m dlopen(): opens a library and prepares it for use

m desym(): looks up the value of a symbol in a given
(opened) library.

m diclose(): closes a DL library

#include <dlfcn.h>

int main() {

double (*cosine)(double);

void* handle = d ("/lib/libm.so.6", RTLD_LAZY);
cosine [

printf ("%f\

m Static linking: libraries are combined _Memory
by the loader into the program in-

memory image

> Waste memory: duplicated code Libe.ilb
> Faster during execution time
*Static linking + Dynamic loading -

» Still can’t prevent duplicated code

Program A

Program B Program C

Libc.lib \ Libe.lib Libe.lib Libc.lib

Libc.lib

Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 15

Fragmentation

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Dynamic Linking
m Dynamic linking: Linking postponed
until execution time

> Only one code copy in memory and

shared by everyone

» A stub is included in the pr

memory i

main () o

Libe.lib

70/136

1/29/23, 4:33 PM Memo_OS_20230129

" S
"

Fragmentation

m External fragmentation
» Total free memory space is big enough to ¢
satisfy a request, but is not contiguous
» Occur in variable-size allocation
m Internal fragmentation E‘gz p1 | 2%
» Memory that is internal to a partition 750
| 900 | = =99

1000 1000% = =«

External 5 Internal

os os
300 250
_pL

Compaction

" JEE——— AR S
Paging Concept

m Method:

> Divide physical memory into fixed-sized blocks called frames

> Divide logical address space into blocks of the same size called
pages

> To run a program of n pages, need to find n free frames and
load the program

> keep track of free frames

> Set up a page table to translate logical to physical addresses

m Benefit:

> Allow the physical-address space of a process to be
noncontiguous

> Avoid external fragmentation
» Limited internal fragmentation
» Provide shared memory/pages
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 30

)Address Translation Scheme alh

m Logical address is divided into two parts:

» Page number (p)

+ used as an index into a page table which contains base

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 71/136

1/29/23, 4:33 PM Memo_OS_20230129

MEMORY MANAGEMENT PAGING

Permits a program's memory to be physically noncontiguous so it can be allocated
from wherever available. This avoids fragmentation and compaction.

Frames = physical blocks
Pages = logical blocks
logical physical
Size of frames/pages is addicos R
defined by hardware (power -l___li_l physical
of 2 to ease calculations) @Al P [[d] mamory
.y ——
HARDWARE {
An address is determined by: N T
page number (index into table) + offset —
---> mapping into --->
base address (from table) + offset. page table
8: Memory Management 22

| Address Translation Archite@dréi # <%

m |f Page size is 1KB(2710) & Page 2 maps to frame 5
m Given 13 bits logical address: (p=2,d=20),
what is physical :

S FE 2
5*(1KB)+20

+0,000,010,100

»

- Address Translation

m Total number of pages does no
the total number of

» Total # pages determin

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 72/136

1/29/23, 4:33 PM Memo_OS_20230129

i Paging Summary bl b

m Paging helps separate user’s view of memory and the
actual physical memory

m User view's memory: one single

O
(@)
- |
=4

oQ

» Actually, user’s memor
m OS maintains a cop

m OS maint

Implementation of Page @bl , -

m Page table is kept in memory

m Page-table base register (PTBR)
» The physical memory address of the page table
> The PTBR value is stored in P

o)

» Changing the value of PTBR during Cont
m With PTBR, each m¢ fe ce resultsin

2 memaory

implems

T WIS wITALIVN. VIV y

&= <G
m All memory entries can be accessed at the same tim

» Each entry corresponds to an associative register

® But number of entries are limited

Tunical niimhber of entrie
T'vpical I er

B Associative memory — parallel search
Page .

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 73/136

1/29/23, 4:33 PM Memo_OS_20230129

[
Translation Look-aside Buffer (TLB)
a A cache for page table shared by all processes
8 must be flushed after a context switch

. Secondary
Virtual Address Main Memory Memory
Page # | Offset \/\
Translation
_Lookaside Buffer
> TLB hit
i OfﬁsetI
Load
Page Table Lo
‘_
TLB miss Present \./\
Absent
Frame ﬁ Offset li
Real Address \./\
Page fault
3.a. Page bt
M -1 4 e 1 4
Main
Memory

A.b. Invalid Page Request
2 E
w
BHE
=1 | B
=]
21| £
=l e
B
&
123456 w Y
e
e

Secondary
Storage

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 74/136

1/29/23, 4:33 PM

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Memo_OS_20230129

Valid-Invalid Bit Example

m Potential issues:
> Un-used page entry cause memory waste = use page tahle
length register (PTLR)
> Process memory may NOT be on the boundary of a page =>
memory limit register is still needed

haptor8 Mamoty Management Oparating System €

Shared Pages

m Paging allows processes share common code, which
must be reentrant

m Reentrant code (pure code)
> [t never change during execution
» text editors, compilers, web servers, etc

m Only one copy of the shared cade needs to be keptin
physical memory

m Two (several) virtual addresses are mapped to one
physical address
m Process keeps a copy of its own private data and code

Chaptar8 Memory Managoment Opuriting Syste

Page Table Memory Structure

m Page table could be huge and difficult to be loaded
> 4GB (2%) |ogical address space with 4KB (212) page
=>1 million (2%°) page table entry
> Assume each entry need 4 bytes (32bits)
=> Total size=4MB
~ Need to break it into several smaller page tables, better
within a single page size (i.e. 4KB)
» Or reduce the total size of page table
m Solutions:
» Hierarchical P

» Inve
Chaptor Memory N

75/136

1/29/23, 4:33 PM Memo_OS_20230129

Hashed Page Table Address Translation

] physical
logical address address

[p[d] B e

physical
@ +— lats)’| r'ﬁ‘ﬂ_ﬂr memory

hash table

Chaptor8 Mormory Management Opera

m Maintains NO page table for each process

® Maintains a frame table for the whole memory
» One entry for each real frame of memory

m Each entry in the frame table has
> (PID, Page Number)

m Eliminate the memory needed for page tables but
increase memory access time

~ Each access needs to search the whole frame table
» Solution: use hashing for the frame table

® Hard to support shared p

Chaplerd Memory Management O

N & =tk %
Segmentation

m Memory-management
scheme that supports
user view of memory

m A program is a collection
of segments. A segment
is a logical unit such as: symbol

» main program
» function, object sart
> local/global variables, =

» stack, symbol table, program
> arrays, etc...

subroutine stack

logical address space

3

Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 76/136

1/29/23, 4:33 PM Memo_OS_20230129

Segmentation Hardware

m Limit register is used to check offset length

® MMU allocate memory by assigning an
appropriate base address for each segment
> Physical address cannot overlap between segments

physical_mamory

Address Translation Comparison

m Segment

> Table entry: (segment base addr. , limit)

> Segment base addr. can be arbitrary

» The length of “offset” is the same as the physical memory size
s Page:

» Table entry: (frame base addr.)

» Frame base addr. = frame number * page size

> The length of “offset” is the same as page size

00100 ™\

Chaptocd WMomory Managerman

” Basic Concept

m Apply segmentation in logical address space
m Apply paging in physical address space

Process Segments
— e

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 77/136

1/29/23, 4:33 PM

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Memo_OS_20230129

Address Translation

m CPU generates logical address
> Given to segmentation unit
=>produces linear addresses
> Linear address given to paging unit
=>generates physical address in main memory
m Segmentation and paging units form
equivalent of MMU

a0aress

CRU———>

(seg0,20)

Chaptar8 Momory Managormant

Example: The Intel Pentium

m Logical-address space is divided into 2 partitions:

> 1st: 8K(2%3) segments (private), local descriptor table (LDT)

> 2nd: 8K(2'3) segments (shared), global descriptor table (GDT)
m Logical address:

> max # of segments per process = 214 = 16K

» size of a segment < 222 = 4GB

[selector I

’ 16
’

i3

Chaplor8 Memory Managetnent Oparating Systum C

Intel Pentium Segmentation

m Segment descriptor
> Segment base address and length
> Access right and privileged level

:ibgf:al éddressl selector I

descriptor table

segment descriptor

78/136

1/29/23, 4:33 PM

Memo_OS_20230129

Intel Pentium Paging (Two-Level)

m Page size can be either 4KB or 4MB
> Each page directory entry has a flag for indication

flogical addrass)

Example Question

m Let the physical mem size is 512B, the page size is 32B and the
logical address of a program can have 8 segments. Given a 12
bits hexadecimal logical address “448”, translate the addr.
With blow page and segment tables.

m linear addr:010111110, phy addr:001011110

010001001000

1000110110 i
010110110
001110110 |—010111
000110110
100110110
[100000100
010110110 _
1000010110

Chaplar Momory Man

Virtual Memory _
Area(VMA) of each Physical Address
segment space

Pageframe 35
Pageframe 36
Pageframe 37
Pageframe 38

Page Table Entry(PTE)

BSS Segment ‘ 4 bytes pvage frame address | | U/S| R/w| P ’
(J
Data Segment 4YKB

Code Segment

Segmentation . .
.m»lm Paging unit .im»

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

79/136

1/29/23, 4:33 PM Memo_OS_20230129

high
address » command-line arguments
and environment variables
stack
heap
T initialized to zero
data(bss) ﬂ by exec
iniﬁa”zeti]'ead from
data program file by
low text exec
address

Virtual memory

1111111111l
Free space / <- Guard page ->
TTTTTTTTTT

Memory map
(Process’s memory)

Higher memory addrass
|

Higher memory address
OXFEFFFEFE

&

Process #13

0x00000000

Free space

Lower memory address

Process #n

- DS-Space can access the User-Space
- User-Space cannot access the 0S-Space
or results SEGFAULT.

(per process)

Lover memory addrass

(e) yousha.blog.ir - Iran

Virtual Memory

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 80/136

1/29/23, 4:33 PM

Program Block

o Linker—

Object Exccutable
File File

Memo_OS_20230129

——Loader—>

Program
in memory

Introduction to Operating System _ Virtual Memory _ALL

Boot Block |

page 0

page 1

page 2

page v

virtual

memory

SegmenTable

Page Table

Frame

Frame

Frame

Frame

Frame

Frae
Frame
Frame

Frame

Frame

Frame

Frame

Frame

" JE
Background

m Virtual me

B B E

~NmEmE

E B E

[\

—=ll 0 B

memory
map

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

B B E

physical
memory

81/136

1/29/23, 4:33 PM Memo_0OS_20230129
~ 1. Inmanze FUB, FU

A 0 0 M-
registers and 1 1 [cALL 0 RKF
Page Table. 2 9 :
2. Load Code into 3
memory. b i PUSH AX
3. R_“'.‘"'"g 5 5[MOVE (0x9), AX
4. Finish. =>6 6| MULT AX, 7
int data[8]; 7 7
main() { 8 8| MOVE AX, 3
data[3]=3*7; 9 9
print(data); 10 ol END
} 11 esse]l seeesnens
START 12
ol o |
1|MOVE AX,3 13 30
2|MULT AX, 7 14! 31| POP AX
3| MOVE (0x9), AX 15
4[CALL print, (0x9) #E
5|PoP AX Page Table ... [———
= 6| .END 9 oo« |
.SPACE (8) M
Chapterd Virtual Memory Operating System Concepts — NTHU LSA Lab emory 6
Demand Paging
Demand Paging GRS S

m A page rather than the whole process is brought into
memory only when it is needed

> Less |/O needed =» Faster response
> Less memory needed =» More users
m Page is needed when there is a reference to the page
> Invalid reference =» abort
> Not-in-memory =» bring to memory via paging
m pure demand paging
> Start a process with no page

> Never bring a page into memory until it is required

Demand Paging ik

m A swapper (midterm scheduler) manipulates the
entire process, whereas a pager is concerned
with the individual pages of a process

m Hardware support

> Page Table: a valid-invalid bit
+ 1 =» page in memory
+ 0 => page not in memory
+ Initially, all such bits are set to 0

> Secondary memory (swap space, backing store):
Usually, a high-speed disk (swap device) is use

Chapter9 Virtual Memory Operating System Concepts — NTHU LSA Lab 9

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

82/136

1/29/23, 4:33 PM Memo_OS_20230129

Demand Paging

+ Demand paging: pages are
only loaded into memory

when they are demanded _—

during execution ©
— Less 1/0 needed — 001020 30
— Less memory needed "™ ST L

— Higher degree of
multiprogramming

— Faster response 120315
* Swapin

s8] oo

+ Pager (lazy swapper) never P 1601718 Lol]
swaps a page into memory
unless that page will be needed. cOI1 W2 feal |

+ An extreme case: Pure 1 —

demand paging starts a Tl
process with no pages in =
memory memory

Transfer of a Paged Memory to Contiguous Disk Space

Demand Paging Mechanisms

* PTE helps us implement demand paging
— Valid = Page in memory, PTE points at physical page

— Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary

» Suppose user references page with invalid PTE?
— Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault” P L r
— What does OS do on a Page Fault?:
» Choose an old page to replace

» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
: » Continue thread from original faulting location 7
— TLB for new page will be loaded when thread continued!
— While pulling pages off disk for one process, OS runs another
process from ready queue

» Suspended process sits on wait queue

Demand Paging Performance

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 83/136

1/29/23, 4:33 PM

Memo_OS_20230129

Lo f%
“%7" Performance of Demand Paging

® Demand paging can significantly affect the performance of a computer system. Let's
compute the effective access time for a demand-paged memory.

“ For most computer systems, the memaory-access time (ma) ranges from 10 to 200
nanoseconds.

~ As long as we have no page faults, the effective access time is equal to the memory
access time.

" If, however a page fault occurs, we must first read the relevant page from disk and
then access the desired word.

® Page Fault Rate 0 B p [z 1.0
“ if p=0 no page faults
“ if p=1, every reference is a fault

® Effective Access Time (EAT)
EAT = (1 — p) x memory access+ p (page fault overhead
+ swap page out + swap page in + restart overhead)

Operating System Concepts — 8t Edition 9.17 Silberschatz, Galvin and Gagne ©2009

=

‘w':f Performance of Demand Paging (Cont.)

® Three major activities

e Service the interrupt — careful coding means just several hundred
instructions needed

e Read the page — lots of time
e Restart the process — again just a small amount of time
® Page Fault Rate0<p<1
e if p=0 no page faults
e if p=1, every reference is a fault
m Effective Access Time (EAT)
EAT = (1 — p) x memory access
+ p (page fault overhead
+ swap page out
+ swap page in)

- v‘}wx\:.

Operating System Concepts — 8t Edition 9.19 Silberschatz, Galvin and Gagne ©2013

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

84/136

1/29/23, 4:33 PM Memo_OS_20230129

=

"‘"?i:jDemand Paging Performance Example

® Memory access time = 200 nanoseconds
®m Average page-fault service time = 8 milliseconds

m EAT = (1 —p) x 200 + p (8 milliseconds)
=(1-p x 200 + p x 8,000,000
=200 + p x 7,999,800
m |f one access out of 1,000 causes a page fault, then
EAT = 8.2 microseconds.
This is a slowdown by a factor of 40!!

™

) ‘/":“;:_‘ hﬁ
¥

Operating System Concepts — 8 Edition 9.13 Silberschatz, Galvin and Gagne ©2009

Performance of Demand Paging~

e Stages in Demand Paging
Trap to the operating system
Save the user registers and process state
. Determine that the interrupt was a page fault
| Check that the page reference was legal and determine the location of the page on the disk
5. Issue aread from the disk to a free frame:
1. Wait in a queue for this device until the read request is serviced
2. Wait for the device seek and/or latency time
3. Begin the transfer of the page to a free frame
6. While waiting, allocate the CPU to some other user
Receive an interrupt from the disk I/O subsystem (I/O completed)
Save the registers and process state for the other user
0. Determine that the interrupt was from the disk
10. Correct the page table and other tables to show page is now in memory
1. Wait for the CPU to be allocated to this process again
12 Restore the user registers, process state, and new page table, and then resume the interrupted instruction

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

85/136

1/29/23, 4:33 PM Memo_OS_20230129

Demand-Paged Virtual Memory

m Key idea: use RAM as cache for disk
m OS transparently moves pages
m Page table: page on disk, in memory
= OS updates whenever pages change state
m Requires locality:

= Working set (pages referenced recently)
must fit in memory

= If not: thrashing (nothing but disk traftfic)

UNIVERSITY OF MASSACHUSETTS, AMHERST, = Department of Computer Science

Page Fault

Page Fault CIES R

m First reference to a page will trap to OS
=>» page-fault trap
1. OS looks at the internal table (in PCB) to
decide
> Invalid reference = abort
> Just not in memory = continue
Get an empty frame

3. Swap the page from disk (swap space) into
the frame

4. Reset page table, valid-invalid bit =1
5. Restart instruction

Chapter9 Virtual Memory Operating System Concepts — NTHU LSA Lab 12

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 86/136

1/29/23, 4:33 PM Memo_OS_20230129

Page Fault

A reference to a page with valid bit set to 0 will trap to OS =>

page fault
D) pbing soe p—
OS looks at PCB to decide N
- invalid reference => abort operaling
. . system
- just no in memory i
. Get free frame @
. Swap into frame e B:E
. Reset tables | ® (1
 reslart page table
instruction
. § free i
What if there is no free frame? ® — @ —
- evict a victim page in memory i rison pags
physical
memory

| Page Fault Handling — a different

perspective
Exception ' Page fault exception handler |
CPU chip @ Victim page
PTEA @ i
Wi | Cachel ois
VA Memory
@ @ New page

Fig. 10.14 (Bryant)

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

87/136

1/29/23, 4:33 PM Memo_OS_20230129

Process & Virtual Memory EIES & o

m Demand Paging: only bring in the page
containing the first instruction

m Copy-on-Write: the parent and the child
process share the same frames initially, and
frame-copy when a page is written

m Memory-Mapped File: map a file into the
virtual address space to bypass file system
calls (e.g., read(), write())

 EE— :
Copy-on-Write Wb

= Allow both the parent and the child process to
share the same frames in memory

m If either process modifies a frame, only then a
frame is copied

Chapter9 Virtual Memory Operating System Concepts - NTHU LSA Lab 18

m COW allows efficient process creation (e.g.,

fork())

m Free frames are allocated from a pool of
zeroed-out frames (security reason)
» The content of a frame is er

19

- E— :
Memory-Mapped Files W

m Approach:
> MMF allows file I/0 to be treated as routine memory access by
mapping a disk block to a memory frame
> Afile is initially read using demand paging. Subsequent
reads/writes to/from the file are
treated as ordinary memory accesses
m Benefit:
> Faster file access by using memory access rather than read()
and write() system calls
> Allows
pages

ME filoalla s
allowing the

® Concerns:
» Security(access control

Chaptord Virtual Memory L el dlliimINg efrorts

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 88/136

1/29/23, 4:33 PM

Memo_OS_20230129
=
&= ¥ g

kernel file cache

User space VM

int buf;

int fd = open(filename, O_RDWR);
Iseek(fd, 1024, SEEK_SET);
read(fd, &buf, sizeof(int));

buf ++;

Iseek(fd, 1024, SEEK_SET);
write(fd, &buf, sizeof(int));
close(fd);

Memory
mapped
portion
int fd = open(filename, O_RDWR);
int* area = mmap(0, BUFSIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 1024);
Dyarea[0]++;
close(fd);
munmap(area, BUFSIZE);
Chapter9 Virtual Memory Operating System Concepts - NTHU LSA Lab

File System Mechanism

" ' &) =

int buf; | User space VM kernel file cache

int fd = open(filename, O_RDWR); e
Iseek(fd, 1024, SEEK_SET);
read(fd, &buf, sizeof(int)); Sikiiii
buf ++;
Iseek(fd, 1024, SEEK_SET);
write(fd, &buf, sizeof(int));

=) close(fd);

Memory
mapped
portion

int fd = open(filename, O_RDWR);

int* area = mmap(0, BUFSIZE,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 1024);

area[0]++;

i
munmap(area, BUFSIZE);
24

S
Chapter9 Virtual Memory Operating System Concepts - NTHU LSA Lab

Example 1

Assume that a program has just referenced an address in virtual memory.
Describe a scenario in which each of the following can occur. (If no such scenario

can occur, explain why.)

+ TLB miss with no page fault > Page is in memory but there is no page-no
entry in TLB

* TLB miss and page fault > Page not in memory & no page-no entry in TLB
* TLB hit and no page fault > Page is in memory & page-no entry is in TLB

« TLB hit and page fault > Not possible. TLB contains most accessed page
table entries, so if it’s a TLB hit that means page is there in memory.

Dr. Ragini Karwayun

SWAP

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

89/136

1/29/23, 4:33 PM Memo_OS_20230129

Swapping

m A process can be swapped out of memory to a
backing store, and later t sht back into
memory for continuous exe

1sed bv v

* S &2tk % £
Swapping (cont’d)

m Swap back memory location
» If binding is done at compile/load time
= swap back memory address must be the same
> If binding is done at execution time
=>» swap bac}
® A process to be swap
»Im

» J0IUtions

Cperating
System

Swap Qut
User Space

Main Secondary
Memory Storage

Page Replacement

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 90/136

1/29/23, 4:33 PM Memo_OS_20230129
~ s

Page Replacement Concept EAES Y

m When a page fault occurs with no free frame
> swap out a process, freeing all its frames, or

> page replacement: find one not currently used
and free it

+ Use dirty bit to reduce overhead of page transfers —
only modified pages are written to disk

m Solve two major problems for demand paging
» frame-allocation algorithm:

+ Determine how many frames to be allocated to
a process

> page-replacement algorithm:
+ select which frame to be replaced

Chapter9 Virtual Memory Operating System Concepts - NTHU LSA Lab 27

Page replacement algorithm

* Page replacement algont) L
memory pages to page out (swap out wrlte
to disk) when a page of memory needs to be
allocated.

* Paging happens when a page fault occurs and
a free page cannot be used to satisfy the
allocation, either because there are none, or
because the number of free pages is lower
than some threshold.

Lecture Slides By Adil Aslam

Need for Page Replacement

- Until there is not enough RAM to store all the data needed

- The process of obtaining an empty page frame does not
involve removing another page from RAM.

- But If all page frames are non-empty, obtaining an empty
page frame requires choosing a page frame containing
data to empty.

- Efficient paging systems must determine the page frame
to empty by choosing one that is least likely to be needed
within a short time

- Limited physical memory --> limited number of frame -->
limited number of frame allocated to a process.

- Thus we need various Page Replacement Algorithms

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 91/136

1/29/23, 4:33 PM Memo_OS_20230129

Page Replacement

« What happens if there is no free frame to allocate”

+ Here comes page replacement - find some page in memory that
i5 "ot that used" and swap it out. A free frame was jUst created.

+ Mote that the same page may be brought into memaory several
times overthe life of a process.

+ Use a dirty bit to reduce overnead of page transfers - only
modified pages need to be written to disk, unmodified pages can
be discarded.

+ Page replacement completes the separation between logical
memaory and physical memory. Large virtual memory can be
provided on a smaller physical memory.

2. Modify to invalid i 1. swap out

4, Modify to f, walid f W f

Yair Amir Fall 007 Lecture & 12

FIFO Example

Reference String is:7,0,1,2,0,3,0,4,2,3,0,3,2,1,2,0,1,7,0, 1

7 2 0|0
1 is Present in
1 table so hit the
page
1 0 3|32

Page Fault : 1+1+1+1+1+1+1+1+ 1414141
Check the oldest page
and replaced it. If it is
not present in table

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 92/136

1/29/23, 4:33 PM Memo_OS_20230129

Belady's Anomaly

For FIFO algorithm, as the following counter-example
shows, increasing m from 3 to 4 increases faults

| 123412555344 9 page

m=3 | 12341222533 faults
| 1 234111255
| 123444512345 10 page
m=4 | 12333451234 faults
| . 9 28 &4 5488
| 1 11234512

FIFO Page Replacement

reference string
2 0 3 0 4 2 3 0 i 2 0 1 7

LT

page frames

(=]

—_

Imlclﬂl
=Tol4]

i

FIFO lllustrating Belady’s Anomaly

2 @
O |

number of page faults
- -
=
1 T
1 { | -

|
|
|

Unlt‘4 S number of frames i 45

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

36

93/136

1/29/23, 4:33 PM

Memo_OS_20230129

"LRU Algorithm (Least Recently Used)

® An approximation of optimal algorithm:
> looking backward, rather than forward

m It replaces the page that has not been used
for the longest period of time

m It is often used, and is considered as quite
good

LRU Algorithm Implementations

® Counter implementation
» page referenced: time d into the counter
» replacement: th oldest counter

+ linear sear

m Stack implementation

* S
Stack Algorithm

m A property of algorithms

&l = ¥ x4

m Stack algorithm: the set of pages in memory for
n frames is always a subset of the set of pages

that would be in memory with n +1 frames

m Stack algorithms do not suffers from Belady's
anomaly

m Both optimal algorithm and LRU algorithm are
stack algorithm

Chapter9 Virtual Memory Operating System Concepts - NTHU LSA Lab

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

94/136

1/29/23, 4:33 PM Memo_OS_20230129

Least Recently Used (LRU)

» Well, OPT is not possible...

» Replace the page that has not been used
for the longest period of time.

34 5

LEAST RECENTLY USED (LRU) ALGORITHM

1

+ reference string

7 01 2 0 3 0 4 2 3 0 8 2 1 2 0 1 7 0 1

4] [4] [4] [o
| [of [o [o] [of o] [o] [3] [1 CT]
L G [2 2] 2] [2

page frames

701

ArdEd
0|0
1

{8 S) . [#¥)

Ml w| oo

w
N ol -9

WOl | W
W O | b
R e

—_— o |N (N

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 95/136

1/29/23, 4:33 PM Memo_OS_20230129

LEAST RECENTLY USED (LRU) ALGORITHM

reference string

| 7 01 2 0 3
| [o] [9] |o]
o N

page frames

—_

[eTe]
MIEIE
EIEE

7 1(2/0[3[0[4|2(3[0(3|2]1|2]/0(1]|7]|0]]I
oz 7(2] (2| |4[4]|4]0 I I I
0|0fo| [O0] [0]0|3]3 3| |0 0
11 3 3(2(2]2 20|

'roblem-05: Optimal Page Replacement Algorithms

otimal is a type of cache algorithm used to manage memory within a computer. OS replaces the page that will not be used for
e longest period of time in future.

system uses 4-page frames for storing process pages in main memory. It uses the Optimal page replacement policy.
ssume that the first 4 frames have references 6,7,3,4. What is the total number of page faults that will occur while processing
e page reference string given below;

so calculate the hit ratio and miss ratio.

rames | 6 7 3 4 6 7 1 2 3 4 1 2 4 3 5 3 2 5 6 7 1 203 3
1 6 6 6 6 6 6 6 2 2 2 2 2 2 2
2 7 7 7 7 7 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4 4 4 4 4
PF X X X X / / X X / / / / / /
=miss = I
= hit =

Problem 3 (20 pts) Memory Management

a. (8 pts) Given the following page replacement algorithms: FIFO, LRU and Belady answer
each of the following questions. Must Explain each answer for full credit.
I Which algorithm that is applicable and hardest to implement in practice?

2. Which algorithm that is applicable and easiest to implement in practice.
3.. Which algorithm might behave worse when given more physical frames?
4. . Which algorithm is not applicable as it 1s?

b. (7 pts) Consider a paging system with a virtual memory size 4 Gbytes. Let the page size be
4 Kbytes, and assume the physical memory size be 64 Mbytes. Each entry in the page table has
one Modify bit, and two protection bits.

I. What is the maximum memory needed to store the one level page table in bits.?

2. If two level page tables were to be used how many secondary page tables we will have if the
master page table is stored in one frame? Assume each entry in the master page table 4 bytes.

c. (5 pts) Name one advantage and one disadvantage to two level page table compared to 1 level
page table then explain which one is the best to implement in practice and why?

Trashing

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 96/136

1/29/23, 4:33 PM

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

Memo_OS_20230129

Definition of Thrashing

m If a process does not have “enough” frames
> the process does not have # frames it needs to

support pages in active use
=» Very high pag

Ly

m A process is thrashing if it is spending more

time paging than executing

thrashing

CPU utilization

" JEE
:

y Thrashing

m Performance problem caused by thrashing
(Assume global replacement is used)

> processes queued for I/O to swap (page fault)

=» low CPU utilization
=>»0S increases the d e of multiprogramming
=» new processes t mes
= more p d thus more 1/O
her
m To prever
fore

- Working-Set Model

m Locality: a set of pages that are actively used
together

m Locality model: as a process executes, it moves
from locality to locality

om old processes

97/136

1/29/23, 4:33 PM Memo_OS_20230129

Working-Set Example

m ifA=10:

page reference table
.26157777516234123444343444132344

}

" S
Working-Set Model

m Prevent thrashing using the working-set size
» WSS, : working-set size for process i

“5\?} Page-Fault Frequency Scheme

® Establish “acceptable” page-fault rate
“ If actual rate too low, process loses frame
C If actual rate too high, process gains frame

= increase number
= of frames
3
| upper bound
2 \
©
=3

lower bound

x decrease number|
of frames
number of frames
Operating System Concepts — 8" Edition 9.50 Silberschatz, Galvin and Gagne ©2009

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 98/136

1/29/23, 4:33 PM Memo_OS_20230129

Thrashing Diagram I

4

[thrashing

CPU utilization

degree of multiprogramming
* Why does paging work?
Locality model
— Process migrates from one locality to another.
— Localities may overlap.

* Why does thrashing occur?
T size of locality > total allocated memory size

* High degree of MP results in allocation for a process to get too
small and perhaps lose its “working set” — see below

Applied Operating System Concepts 10.41 Silberschatz, Galvin, and Gagne ©1999

Cause of Thrashing

+ All processes now queue up for the paging device, the ready
queue empties. => CPU utilization decreases.

» CPU scheduler sees the decreasing CPU utilization and
increases the degree of multiprogramming.

« Result: more page faults, longer queue for the paging device ,
CPU utilization drops further, ...

» Thrashing has occurred, and system throughput plunges, the
pagefault rate increases tremendously. As a result, the effective
memory-access time increases.

» No work is getting done, because the processes are spending
all their time in paging.

» To prevent Thrashing,
we must provide a thrashing

process with as many
frames as it needs.

CPU utilization

¢ how many frames ?

Intreduction to Operating Systems dagree of multiprogramming

" JEE
Working Sets and Page Fault Rates

peak of new locality

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 99/136

1/29/23, 4:33 PM Memo_OS_20230129

File Management

P
> & Layered File System

application programs

logical file system

J

file-organization module

J

basic file system

J

1/O control

J

devices

Operating System Concepts — 8" Edition 11.5 Silberschatz, Galvin and Gagne ©2009

S File System Layers

m /O control manages I/O devices at the 1/0O control layer

e Given commands like “read drive, cylinder 72, track 2, sector 10, into memory location 1060”
outputs low-level hardware specific commands to hardware controller

m Basic file system: given command like “retrieve block 123" translates to device driver
m Also manages memory buffers and caches (allocation, freeing, replacement)
= Buffers hold data in transit
m Caches hold frequently used data
® File organization module understands files, logical address, and physical blocks
B Translates logical block # to physical block #
® Manages free space, disk allocation
® Logical file system manages metadata information

®m Translates file name into file number, file handle, location by maintaining file control blocks
(inodes in Unix)

Directory management
Protection

“ Y

Operating System Concepts — 8" Edition 1.5 Silberschatz, Galvin and Gagne ©2009

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 100/136

1/29/23, 4:33 PM

Memo_OS_20230129

| Layered File System

read(fh, buf, size)
H:

imanages metadata (fp, access)

app program (API)

" JEE
test.exe

read system call

= —me—
Application
3y - RSA Base
Win3Z Layer 4—.(EFS Service).._. CryptaAP] ie |t
&
User Mode
Kernel Mode
I/O Manager LPC Communication
Y for All Key
Management Suppaort
EFS Driver . FRe
and FSRTL
- s J FSRTL Callouts
NTFS

I
™

Hard Disk

File Attributes

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

101/136

1/29/23, 4:33 PM

Memo_OS_20230129

File Attributes

Lz
Size — current file size

File Operations

pEr-process
Cpen-file table

fd2|

1 |

fd3

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

system=wide
Open-file table

count | right

1 R
1 R & W
1 W

=

Name — only information kept in human-readable form

Protection — controls who can do reading, writing, executing

SHASHI KS

inode table

A file's attributes vary from one operating system to another but
typically consist of these:

Identifier — unique tag (number) identifies file within file system
Type —needed for systems that support different types
Location — pointer to file location on device

Time, date, and user identification — data for protection, security,
and usage monitoring

Information about files are kept in the directory structure, which is
maintained on the disk. Typically, a directory entry consists of the
s name and its unique identifier.

|u:unt|

metadata

2 | Metadata for fetc/passwd

1 | Metadata for fanything/abc/testixt

Open-File Tables

CAENT 8 R 4

102/136

1/29/23, 4:33 PM

Memo_OS_20230129

File operation

Declaration & Description

fopen() - To open a
file

Declaration: FILE *fopen (const char *filename, const char *mode)

fopen() function is used to open a file to perform operations such as reading, writing
etc. In a C program, we declare a file pointer and use fopen() as below. fopen()
function creates a new file if the mentioned file name does not exist.
FILE *fp;
fp=~fopen (“filename”, "'mode”);
Where,
fp - file pointer to the data type “FILE".
filename - the actual file name with full path of the file.
mode - refers to the operation that will be performed on the file. Example: , w, a, r+,
w+ and a+. Please refer below the description for these mode of operations.

fclose() - To close a
file

Declaration: int fclose(FILE *fp);
fclose() function closes the file that is being pointed by file pointer fp. In a C program,
we close a file as below.
fclose (fp);

fgets() - Toread a
file

Declaration: char *fgets(char *string, int n, FILE *fp)
fgets function is used to read a file line by line. In a C program, we use fgets function
as below.
fgets (buffer, size, fp);
where,
buffer - buffer to put the data in.
size - size of the buffer
fp - file pointer

fprintf() - To write
into a file

Declaration:
int fprintf(FILE *fp, const char *format, ...);fprintf() function writes string into a file
pointed by fp. In a C program, we write string into a file as below. fprintf (fp, “some
data"); or
fprintf (fp, “text %d", variable name);

File operation

Declaration & Description

fopen() - To open a
file

Declaration: FILE *fopen (const char *filename, const char *mode)

fopen() function is used to open a file to perform operations such as reading, writing
etc. In a C program, we declare a file pointer and use fopen() as below. fopen()
function creates a new file if the mentioned file name does not exist.
FILE *fp;
fp=fopen (“filename”, "'mode”);
Where,
fp - file pointer to the data type “FILE".
filename - the actual file name with full path of the file.
mode - refers to the operation that will be performed on the file. Example: 1, w, a, r+,
w+ and a+. Please refer below the description for these mode of operations.

fclose() - To close a
file

Declaration: int fclose(FILE *fp);
fclose() function closes the file that is being pointed by file pointer fp. In a C program,
we close a file as below.
fclose (fp);

fgets() - To read a
file

Declaration: char *fgets(char *string, int n, FILE *fp)
fgets function is used to read a file line by line. In a C program, we use fgets function
as below.
fgets (buffer, size, fp);
where,
buffer - buffer to put the data in.
size - size of the buffer
fp - file pointer

fprintf() - To write
into a file

Declaration:
int fprintf(FILE *fp, const char *format, ...);fprintf() function writes string into a file
pointed by fp. In a C program, we write string into a file as below. fprintf (fp, “some
data”); or
fprintf (fp, “text %d", variable name);

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

103/136

1/29/23, 4:33 PM

Memo_OS_20230129

File operation

Declaration & Description

fopen() - To open a
file

Declaration: FILE *fopen (const char *filename, const char *mode)

fopen() function is used to open a file to perform operations such as reading, writing
etc. In a C program, we declare a file pointer and use fopen() as below. fopen()
function creates a new file if the mentioned file name does not exist.
FILE *fp;
fp=fopen (“filename”, "'mode”);
Where,
fp - file pointer to the data type “FILE".
filename - the actual file name with full path of the file.
mode - refers to the operation that will be performed on the file. Example: , w, a, r+,
w+ and a+. Please refer below the description for these mode of operations.

file

fclose() - To close a

Declaration: int fclose(FILE *fp);
fclose() function closes the file that is being pointed by file pointer fp. In a C program,
we close a file as below.
fclose (fp);

fgets() - Toread a
file

Declaration: char *fgets(char *string, int n, FILE *fp)
fgets function is used to read a file line by line. In a C program, we use fgets function
as below.
fgets (buffer, size, fp);
where,
buffer - buffer to put the data in.
size - size of the buffer
fp - file pointer

fprintf() - To write
into a file

Declaration:
int fprintf(FILE *fp, const char *format, ...);fprintf() function writes string into a file
pointed by fp. In a C program, we write string into a file as below. fprintf (fp, “some
data"); or
fprintf (fp, “text %d", variable name);

File Type

File type Usual extension Function

Executable exe,com,bin Read to run machine
language program

Object obj,0 Compiled,machine

language not linked

Source code C,java,pas,asm,a Source code in various
languages

Batch bat,sh Commands to the
command interpreter

Text txt,doc Textual data,documents

Word processor Wp,tex,rrf,doc Various word processor
formats

Archive arc,zip,tar Related files grouped

into one file compressed

File Access

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

104/136

1/29/23, 4:33 PM Memo_0OS_ 20230129
§ EIE S
Access Methods

m Sequential access
> Read/write next (block)
> Reset: repositioning the file pointer to the beginning
> Skip/rewind n records

current position
beginning P end

<4 rewind :i
=== read or write =

Chapter10 FS Interface Operating System Concepts —~ NTHU LSA Lab

'__, &= 1 % Y
Access Methods

m Direct (relative) access
> Access an element at an arbitrary position in a sequence
> File operations include the block # as parameter

> Often use random access to refer the access pattern
from direct access

sequential access implementation for direct access
reset cp =0
read next read cp;
cp = cp+l;
write next write cp;
cp = cp+i;
Chapter10 FS Interface Operating System Concepts - NTHU LSA Lab 9

" S DENE S

Index Access Methods

m Index: contains pointers to blocks of a file

m To find a record in a file:
» search the index file = find the pointer
> use the pointer to directly access the record

m With a large file = index could become too large

logical record
last name number
Adams
Arthur
Ashor] Smith, John | social-security | age
- | /
index file relative file
Chapter10 FS Interface Operaling System Concepts ~ NTHU LSA Lab 10

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 105/136

1/29/23, 4:33 PM Memo_OS_20230129

File allocation table

File name Start block Ltnglh
File A 2 3
File B 9 3
File C 18 8
File D 30 .
File E 26 3

File System Organization

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 106/136

1/29/23, 4:33 PM Memo_OS_20230129

r d.l ™ - di -
partition A < s disiia
L e - disk 1
(| directory rition C Z
RRAER) files
partition B < files
- disk 3
b =

S— 8
L : CAENG S P
Tree-Structured Directory
m Absolute path: starting from the root

m Relative path: starting from a directory

T

* BT
F A : & =W ¥ x4
Acyclic-Graph Directory
m Use links to share files or directories
» UNIX-like: symbolic link (In -s /spell/count /dict/count)
A file can have multiple absolute paths

m When does a file act

File System Mounting and Sharing and
Protecion

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 107/136

1/29/23, 4:33 PM Memo_0OS_20230129
i . CAEN S P A
File System Mounting

m A file system must be mounted before It can

FILE SYSTEM MOUNTING

» As a file must be opened before it is used, a file system must be mounted bef
it can be available to processes on the system.

» The operating system is given the name of the device and the mount point—the
location within the file structure where the file system is to be attached.
Typically, a mount point is an empty directory.

MOUNT POINT

(@ (b)
File system. (a) Existing system. (b) Unmounted
volume.

File Sharing

* Sharing of files on multi-user systems is
desirable

* Sharing may be done through a protection
scheme

* On distributed systems, files may be shared
across a network

» Network File System (NFS) is a common
distributed file-sharing method

=
o™
<
o™
(=]
==
b o
(=)
L=
=]
-
i
S
T
-
2
-
H

T
o
<
O
o
Z
<
T
O
w
O]
w
-
-
@)
O
|_
LL
=

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 108/136

1/29/23, 4:33 PM

Memo_OS_20230129

File server

Ethernet

; i Network

file system

- BEE—
-

Clients File server Mass storage

IONOS

File Sharing on Multiple Users

) PRSIy
Access-Control Lis 82tk $ g

m We can create an access-control list (ACL) for each use

» check requested file access against ACL
> problem: unlimited # of users
m 3 classes of users = 3 ACL (RWX) for each file
» owner (e.g. 7 = RWX = 111)
> group (e.g. 6 =RWX=110)

> public (others) (e.g. 4 = RWX = 100) chmod 662
FrW-TW-T-- I pbg staff 31200 Sep 3 08:30 intro.ps
drwx------ 5 pbg staff 512 Jul 8 09.33 private/
L.llwxnvxr-x 2 pbg staff 512 Jul 8 09:35 doc/
}hthwx--- 2 pbg student 512 Aug 3 14:13 student-proj/
FrW-r--r-- 1 pbg staff 9423 Feb 24 2003 program.c
FIWXP-XT-X 1 pbg staff 20471 Feb 24 2003 program
drwx--Xx--x 4 pbg faculty 512 Jul 31 10:31 lib/
A — 3 pbg staff 1024 Aug 29 06:52 mail/
drwxrwxrwx 3 pbg staff 512 Jul 8 09:35 test/
Chapter10 FS Interface Operaling System Concepts -~ NTHU LSA Lab

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

109/136

1/29/23, 4:33 PM Memo_OS_20230129

OVEWIEW' 3!4 3. read the directory

4: update FCB and directory -
k kernel memory : disk memory

o
—]
==

directory structure

usel’ prograin

open (filename)

v directory structure

11 create a new file T >

FCB

5: a file rfes:'c’ﬂ'pmr.ﬁfp handle

is returned 2: allocate a new FCB

File Structure in Linux

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 110/136

1/29/23, 4:33 PM Memo_OS_20230129

Boot Loader Files
Configuration Files
User Home Directories
Root Home Directory
Third-Party Applications |
Device Files
Variable Files
User Binaries
System Binaries
User Applications

TecMint.com

Process Information

TecMint.com

Mount Directory
Virtual File System
Removable Devices

Temporary File System

ftmp — 1empoi wg‘}r,l:;lﬂ_@g

o R CIE — S Recover Broken kiles
System Libraries

Service Data Directory

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 111/136

1/29/23, 4:33 PM Memo_OS_20230129

Understanding The Linux File Permissions

Column: 1
l\\!l rwx

.
User Rights Group Rights

While the first column defines a directo i ink, the next 3 columns (2, 3, 4) define
the permissions for the User, Group and I s (e else) groups.

Linux Permissions Made Easy

add each number to obizin the value (4 + 2 +1=7)
hmnrrmﬁl:d:m convert it to decamal then you should have the value (r-x = 101 base 2 = 5 base 10)

File type Permission classes
L Read

il o
drwxrwxrwx rwx

- WX rw- r--

Read, write and execute
permissions for all other users

Read, write and execute permissions for
members of the group owning the file

Read, write and execute permissions
for the owner of the file

File type: *—" means a file.
"d” means a directory.

On-Disk Structure

file:///C:/Users/User/Downloads/Memo_0OS_20230129.html 112/136

1/29/23, 4:33 PM Memo_0OS_ 20230129
S
-l
On-Disk Structure

m Boot control block (per partition): information needed
to boot an OS from that partition
> typical the first block of the partition (empty means no OS)
» UFS (Unix File Sys.): boot block, NTFS: partition boot sector
m Partition control block (per partition): partition details

» details: # of blocks, block size, free-block-list, free FCB
pointers, etc

> UFS: superblock, NTFS: Master File Table
m File control block (per file): details regarding a file

> details: permissions, size, location of data blocks
» UFS: inode, NTFS: stored in MFT (relational database)

m Directory structure (per file system): organize files

&= ¥ x4

Chapter11 FS Implementation Operating System Concepts - NTHU LSA Lab y 4

" S
On-Disk Structure

Partition File Control Block (FCB)
Boot Control
Block (Optional) fle permissions
Partition Control
Block

List of Directory

Control Block

In-Memory Structure

&= g
" In-Memory Structure

m in-memory partition table: information about
each mounted partition

m in-memory directory structure: information of
recently accessed directories

m system-wide open-file table: contain a copy of
each opened file’s FCB

m per-process open-file table: pointer (file
handler/descriptor) to the corresponding
entry in the above table

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 113/136

1/29/23, 4:33 PM Memo_OS_20230129

b i
— L L]
directory structure

open (file name) ~ El
directory structure

file-control block

user space kernel memory secondary storage

(a)

index

[[]

F | A data blocks

\
an

/
0

read (index)

per-process system-wide file-control block
open-file table open-file table
user space kernel memory secondary storage

(b)

" S
. y EAES R o
File Creation Procedure

1. OS allocates a new FCB

2. Update directory structure

1. OSreadsin the corresponding directory
structure into memory

2. Updates the dir structure with the new file
name and the FCB

3. (After file being closed), OS writes back the
directory structure back to disk

3. The file appears in user’s dir command

Chapter11 FS Implementation Operating System Concepts - NTHU LSA Lab 11"

Virtual File System

user process (file)
file-system interface i

kernel (POSIX API, FS)

VFS interface 1
generic block layer
driver

local file system local file system remote file system ‘
type 1 type 2 type 1
device

(protocol specfic API)

S 8 = I

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 114/136

1/29/23, 4:33 PM Memo_OS_20230129

VIRTUAL FILE SYSTEMS

» General method of implementing multiple types of file systems is
to write directory and file routines for each type.

» But, most operating systems, including UNIX, use object-oriented
techniques to simplify, organize, and modularize the
implementation.

» The first layer is the file-system interface, based on the open(),
read(), write(), and close() calls and on file descriptors.

‘ local fike system ‘ local file system ‘ ‘rﬂmﬂeﬂm
type:

» The second layer, the virtual file system (VFS) layer, serves two type 1

important functions:

1. It separates file-system-generic operations from their implementation
by defining a clean VFS interface. =~ —— —

i
2. The VFS provides a mechanism f iguely representing a file
throughout a network—The VFS is based on a file-representation
structure, called a vnode (unique id for network wide files).

Virtual File System layer (VFS)

e Has one VFS structure for each mounted file system and one v-node per open file.

Telates a remote file system to
the local directory on which it is
mounted.

Local
Directory

File handle of
the remote file

26

Virtual File System Py

m Four main object types defined by Linux VFS:
» inode =» an individual file
» file object =» an open file
» superblock object =» an entire file system
» dentry object = an individual directory entry
m VFS defines a set of operations that must be
implemented (e.g. for file object)
» int open(...) = open a file
> ssize_t read() = read from a file

Chapterit FS Oy System Concepts - NTHU LSA Lab 13

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 115/136

1/29/23, 4:33 PM

Memo_OS_20230129

m Linear lists

Chapter11 FS Implementation

Allocation Methods

S5 File-Allocation Table (FAT)

» hash table usually has fixe

Directory Implementation

> list of file names with pointers to data blocks

> easy to program but poor performance
+ insertion, deletion, searching

m Hash table — linear list w/ hash data structure
> constant time for searching
> linked list for collisions on a hash entry

&= ¥ x4

H £ N+ :
OT entries

directory entry

[test [eee T 217

name start block

W First portion of blocks of each partition are
used to store the FAT.

B As many entries in the FAT as there are
data blocks in the partition.

B The FAT stores the pointers that would be

stored in each block in a pure linked scheme

B Not as fragile as linked scheme, provided
the FAT is protected/backed-up

B Was used in MS-DOS

no. of disk blocks -1

Operating System Concepts — 9" Edition 1225

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

217

339

618

Silberschatz, Galvin

116/136

1/29/23, 4:33 PM

Memo_OS_20230129

File Allocation Table (FAT)

] This is a variation of the

linked allocation by
pulling all pointers into a

table, the file allocation

table (FAT).
U Large no. of disk seeks.

1 Can do direct access.

FAT
0
+217 618
directory
test
339| end-of-file
217
618 339

U FAT needs space.
U The left diagram shows

file test has its first

block at 217, followed by
618, 339 (end of file).

no. of blocks-1

U What if FAT is damaged?

We all know it well!

Contiguous File Allocation

="Asingle
contiguous set of
blocks is allocated
to a file at the time
of file creation

=Preallocation
strategy using
variable-size
portions

u|s the best from
the point of view
of the individual
sequential file

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

File A
o1 1] A N R File A 2

3

File B o 5

S I . s B 7

File B File D 30 2

o i 2 3
wEE u[EE v o 1] HEE J

s W] v iz w2
File C
FileE

2 2]]] 5]

File D

30BRR nR wJ s]

—— e File Allocation Table

File Name Start Block Length

Figure 2.9 Contignous File Allocation

117/136

1/29/23, 4:33 PM

w Linked allocation
I

m File is a linked list of disk
blocks

= Blocks may be scattered
around the disk drive

= Block contains both pointer
to next block and data

= Files may be as long as

needed
= New blocks are allocated as
needed

= Linked into list of blocks in
file

= Removed from list (bitmap)
of free blocks

32

=™

_—
‘m-’-..‘s;’-l

Memo_OS_20230129

Start=9 Start=3
End=4 End=6
Length=2902 | | Length=1500

Example of Indexed Allocation

PN

directory

|

index block
L

file
jeep

OD1ﬂfDS

]
4[] 5[] 7]
8] g el |

24 25026 J27[]

28[129 Jso[Ja1[]
N

Operating System Concepts — 8 Edition

1.22

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

5|
__/"\,\%

Silberschatz, Galvin and Gagne ©2009

O -

118/136

1/29/23, 4:33 PM Memo_0OS_20230129
T EEESSS——

Free Space W e

m Free-space list: records all free disk blocks
m Scheme
> Bit vector
»Linked list (same as linked allocation)
»Grouping (same as linked index allocation)
» Counting (same as contiguous allocation)

m File systems usually manage free space in
the same way as a file

Chapter11 FS Implementation Operating System Concepts - NTHU LSA Lab 30

.:- aj_ﬁ*d{’g-

|
Bit vector
m Bit Vector (bitmap): one bit for each block
> e.g.00111100111111111001110011000000.....

©: simplicity, efficient

(HW support bit-manipulation instruction)

Storage Management

Disk Structure

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 119/136

1/29/23, 4:33 PM

Memo_OS_20230129

Disk Structure

B Disk drives are addressed as

track t

— arm assembl

g}

rotation

Moving-head disk mechanism

Operating System Concepts — 7t Edition, Jan 1, 2005 12.5

DISK DRIVE STRUCTURE

o Data stored on surfaces

« Up to two surfaces per
platter

« One or more platters per disk
o Data in concentric tracks
« Tracks broken into sectors
o 256B-1KB per sector
» Cylinder: corresponding
tracks on all surfaces
o Data read and written by
heads
« Actuator moves heads
« Heads move in unison

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

large 1-dimensional arrays of
logical blocks

e The logical block is the
smallest unit of transfer,
usually 512 bytes

The array of logical blocks is
mapped into the sectors of
the disk sequentially

e Sector 0 is the first sector
of the first track on the
outermost cylinder

e Mapping proceeds in
order through that track,
then the rest of the tracks
in that cylinder, and then
through the rest of the
cylinders from outermost
to innermost

Silberschatz, Galvin and Gagne ©2005

sector

platter
track
cylinder —™=

surfaces

spindle

120/136

1/29/23, 4:33 PM

Memo_OS_20230129

Moving-head Disk Mechanism

track t «— spindle

«— arm assembly
sector s

head

|
|
|
| read-write
|
|
|
|

rotation

125

Sectors per Track e

m Constant linear velocity (CLV)
» density of bits per track is uniform
» more sectors on a track in outer cylinders
» keeping same data rate
=>» increase rotation speed in inner cylinders
» applications: CD-ROM and DVD-ROM
m Constant angular velocity (CAV)
» keep same rotation speed
» larger bit density on inner tracks
» keep same data rate
» applications: hard disks

Chapter12 Mass Storage System Operating System Concepts ~ NTHU LSA Lab 4

Disk 10

m Disk drive attached to a computer by an 1/O bus
> EIDE, ATA, SATA (Serial ATA), USB, SCSI, etc
» 1/0 bus is controlled by controller
+ Host controller (computer end)

A 2

+ Disk controller (built into disk drive)

Chapter12 Mass Storage System Operating System Concepts ~ NTHU LSA Lab s

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

121/136

1/29/23, 4:33 PM Memo_OS_20230129

Operating System

Structure g

» Track » Seek Time
» Sector » Rotational Latency
» Cylinder » RPM
» Spindle » Transfer Time
» Read/ Write Head
(Arm assembly)

Disk Scheduling Algorithm

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

122/136

1/29/23, 4:33 PM Memo_OS_20230129

electing a Disk—Scheduling Algorithm

= Simulation results
= low load ——> SCAN
= medium to heavy load ——> C-SCAN
= influenced by the file—allocation method
= contiguously allocated file
= a linked or indexed file

= the location of directories and index blocks

= placing the directories halfway between the
inner and outer edge of the disk

= placing the directories at either end

SunMoon University 19

Selecting a Disk-Scheduling
Algorithm

O SSTF is common and has a natural appeal

O SCAN and C-SCAN perform better for systems that place
a heavy load on the disk.

0 Performance depends on the number and types of
requests.

O Requests for disk service can be influenced by the file-
allocation method.

O The disk-scheduling algorithm should be written as a
separate module of the operating system, allowing it to
be replaced with a different algorithm if necessary.

O Either SSTF or LOOK is a reasonable choice for the
default algorithm.

16

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 123/136

1/29/23, 4:33 PM

Memo_OS_20230129

iDisk Scheduling Algorithms

Selectionaccording to requestor

RSS

Random scheduling

For analysis & simulation

FIFO

Firstin first out

Fairest of them all

Priority

Priority by process

No disk optimization

LIFO

Lastin first out

Max locality & resource

Selection according to requested item

SSTF

Shortest service time first

High utilization, small queues

SCAN

Back and forth over disk

Better service distribution

C-SCAN

One way with fast return

Lower service variability

N-step-
SCAN

SCAN of Nrecords ata
time

Service guarantee

FSCAN

NsS w/N=queue at
beginning of SCAN cycle

Load sensitive

Example

Trace the policies FIFO, SSTF, SCAN, C-SCAN and FSCAN for the
following disk requests. Each I/O request on a track takes 5 time
units. At time 0, the disk starts reading track 10, and the read/write
head was moving to the larger track number direction .

Time

Request to
access track ..

10 | 19 3 14 |12 | 9

Track access order Average seek length
FIFO 10.19,3,14,12,9 (9+16+11+2+3)/5=8.2
SSTF 10,14,12,9,3,19 (4+2+3+6+16)/5=6.2
SCAN 10,14,19,12,9,3 (4+5+7+3+6)/5=5
C-SCAN 10,14,19,3,9,12 (4+5+16+6+3)/5 = 6.8
FSCAN 10,14,19,3,9,12 (4+5+16+6+3)/5 = 6.8

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

11

124/136

1/29/23, 4:33 PM

Memo_OS_20230129

Disk Scheduling Algorithms

Table 11.2 Comparison of Disk Scheduling Algorithms

(a) FIFO (b) SSTF (c) SCAN (d) C-SCAN
(starting at track 100) (starting at track 100) (starting at track 100, in the (starting at track 100, in the
direction of increasing track direction of increasing track
number) number)
Next track Number of Next track Number of Next track Number of Next track Number of
accessed tracks accessed tracks accessed tracks accessed tracks
traversed traversed traversed traversed
55 45 90 10 150 30 150 50
58 3 58 32 160 10 160 10
39 19 55 3 184 24 184 24
18 21 39 16 20 94 18 166
90 72 38 1 58 32 38 20
160 70 18 20 55 3 39 1
150 10 150 132 39 16 55 16
38 112 160 10 38 1 58 3
184 146 184 24 18 20 S0 32
Average seek 553 Average seek 275 Average seek 278 Average seek 358
length length length length
38

Problem - C-LOOK

Disk queue with requests for I/0 to blocks on cylinders 98, 183, 41, 122, 14,
124, 65, 67. The head is initially at cylinder number 53 and moving towards the
end. The cylinders are numbered from O to 199. The total head movement in number

of cylindersincurred while servicing these requestsis _

EI Eign- r + ¥ t T t t ¥ t f i

-

-
Order of head movements = 53 - 65 > 67 -» 98 -» 122 -» 124 -» 183 > 14 -» 41

Total head movements incurred while servicing these requests

= |53 - 65| + |65- 67| + |67 - 98] + |98 - 122| + [122 - 124| + |124 - 183] + [183 - 14|
|14 -41| =12+ 2+ 31+ 24+ 2+ 59+ 169 + 27 = 326

Verification:= [183 - 53| + [183- 14| + [41-14| = 130 + 169 « 27 = 325

Disk Formatting

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

125/136

1/29/23, 4:33 PM Memo_OS_20230129

Disk Formatting

A brand new magnetic disk is a blank slate. There
is no such thing as sectors. Tracks exist only as
abstractions: we know they are actually created by
how disk heads move over the disk surface (step
motors).

0111010100100101001
0111010100100101110101001
11010111010100100101110101001
00101100111010100100101110101001

Before a disk unit can be used as we'’ve discussed,
it is necessary to divide each track into sectors,
what is known as low-level formatting.

01010101011010700100101110101001
10000111010100100101110101001
0111010100100101110101001
01110101001001011101

This formatting operation fills the disk with a .
special data structure for each sector:

header data trailer

v

error-correcting code

04/21/2004 CSCI 315 Operating Systems Design 2

Disk-Formatting process involves

O Iy

Low-Level Partitioning High-Level
Formatting Formatting

High-level Formatting

.

Clear data on hard-disk
SZ

Generate boot information

<~
Initialize FAT

L
Label logical bad sectors

Swap-Space Management

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 126/136

1/29/23, 4:33 PM Memo_OS_20230129

Swap-Space Management

+ Swap-space — Virtual memory uses disk space
as an extension of main memory

+ Swap-space can be carved out of the normal file
system, or, more commonly, it can be ina
separate disk partition

+ Swap-space management

= Allocate swap space when process starts; holds
text segment (the program) and data segment

= Kernel uses swap maps to track swap-space use

™

o
& Swap-Space Management

B Swap-space
e Virtual memory uses disk space as an extension of main memaory

® Swap-space can be carved out of the normal file system, or,
e more commonly, it can be in a separate disk partition

m Swap-space management
e BSD allocates swap space when process starts;
» holds text segment (the program) and data segment
e Kernel uses swap maps to track swap-space use

e Solaris 2 allocates swap space only when a page is forced out of
physical memory,

» not when the virtual memory page is first created.

Principles of Computer Operating Systems 5

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 127/136

1/29/23, 4:33 PM

Memo_OS_20230129

[swap area
page
= elot
swap partition

or swap file 4KB 4KB 4KB 4KB 4KB

A F 3 3 h F 3

Y Y A 4 Y Y

swap map 1 0 q 0 1

|

4
\ Shared by 3 different processes
Empty space

I/0 System Mangement

|/O Hardware

* Computers support a wide variety of /O devices, but common concepts

apply to all:

— Port: connection point for a device

— Bus: set of wires that connects to many devices, with a protocol
specifying how information can be transmitted over the wires

— Controller: a chip (or part of a chip) that operates a port, a bus, or a

device

* How can the processor communicate with a device?

— Special instructions allow the processor to transfer data and
commands to registers on the device controller

— The device controller may support memory-mapped 1/0:

— The same address bus is used for both memory and device access.

— The same CPU instructions can access memory locations or

devices.

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

128/136

1/29/23, 4:33 PM Memo_OS_20230129

User

I
=
<

Application

=
|

Software o

Operating System <=

>
l—

Device Driver

I
=
k|

Hardware in

most case Device

User Space

oS/

Kernel Space 4 .
OS-specific

Verticals

Device

Drivers
Device-specific

Hardware
" Protocol specific

s/ .
Horizontals

Kemel Space

H/W Space

Device Controller Hardware
Protocol

'

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

129/136

1/29/23, 4:33 PM Memo_OS_20230129

2006

monitor processor
cache
graphics bridge/memory | |
controller controller Lz el SCSI controller
i PCI bus)
i expansion bus
IDE disk controller s keyboard

@ @ (] expansion bus)
TN =l B

/O Methods Categorization g y 4 g

Vile

~ =~ MOn7g

+# moadraoc A (I2VILS
(3 5o d UL Vil

m Depending on how to adc

g

i

» Port-mappec

*

I/O Methods Categorization

m Depending on how to interact v

» Pall (busy-waiting)

DMA(Direct Memroy Access)

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 130/136

1/29/23, 4:33 PM

CPU

Memo_OS_20230129

Conftroller generates

inferrupt when transfer is Processor WITH DMA
finished
DMA
request
' | /O device
—_— DMA controller eg: Hard drive
| — &

Srstem Bus Transfer to and from ~ i
memory
’ When RAM needs data from an VO device | the
CPU signals a DMA request to the DMA controller ,
e along with transfer size , destination address and
other important information .
RAM The DMA controller transfers data while the system
bus is free | it generates RAM addresses itself.
A CPU interrupt is generated once the transfer is
done.
Result : CPU is free to do other things |
1._device driver is told to
transfer disk data to
buffer at address X CPU
5. QMA controller transfers 2. device driver tells disk
hytes to buffer X, controller to transfer C L

increasing memory
address and decreasing
CuntiC=0

6. when C = 0, DMA
interrupts CPU to signal

transfer completion

bytes from disk to buffer

at address X

cache

DMA/bus/interrupt X
controller CPU memory bus — memory‘ buffer

>

IDE disk contrpller

@ disk

disk

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

disk

PCI bus
SR
3. disk controller initiates
DMA transfer
4.
each byte to DMA
y controller

131/136

1/29/23, 4:33 PM Memo_OS_20230129

> Interrupt Random Access
BGC CPU Memory (RAM)
" BR RD WR Address Dan ED WE Address Data
Il 1 Readcontrol T T1TT 1
+ ¥ urita control
Address £ ¥
[1 Address hus
select ry Dot bus |.
ED WE Address Data !
ns DMA Acknowledge
RS Divect Mlemnory ’ j)
Access (DMLA) Peripheral
ER Controller - device
+» BG
Interrupt

/O Structure

A Kernel 1/O Structure

m Device drivers: a uniform device-access interface to the

<9

1/0 subsystem; hide the differences among device

controllers from th

OS Security

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 132/136

1/29/23, 4:33 PM Memo_OS_20230129

. Precautions for OS Security |

To Secure Our System and to
avoid the Security breaches
we must take some
precautions in our OS.

So we have to ensure of the
Shown Security
Components:-

Understanding Defense-in-Depth

Using a layered approach:
« Increases an attacker’s risk of detection
+ Reduces an attacker’s chance of success

p

{ Strong passwords, ACLs,
/{_ Data ? backup and restore
strategy
) 0S8 hardening, authentication,
[Host | security update management,
antivirus updates, auditing
[Internal network } Network segments, NIDS
T 1 Firewalls, boarder routers, VPNs
[PEﬂmeel'] with quarantine procedures
\ Physical security Guards, locks, tracking devices
Security policies, procedures, and

Policies, procedures, and awarenes‘sy— education

Error Detection and Correction

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html 133/136

1/29/23, 4:33 PM

A\

Memo_OS_20230129

Error Detection

if

| * Areceivercan detect a change if the original codeword

¢ The receiver has a list of valid codewords, and

¢ The original codeword has changed to an invalid one.

Sender

k bits| Dataword
Generator

Y

n bits| Codeword

Encoder

Receiver

Unreliable transmission

Decoder

Dataword |k bits

Extract

Checker
Discard

A

Codeword n bits

= Error Detection

u Check if any error has occurred
a Don't care the number of errors
o Don't care the positions of errors

Error Correction
o Need to know the number of errors
o Need to know the positions of errors

2 More complex

o The number of errors and the size of the message

@Ermr Detection & Correction

are important factors in error correction

file:///C:/Users/User/Downloads/Memo_QOS_20230129.html

134/136

1/29/23, 4:33 PM Memo_OS_20230129

mErmr Detection & Correction

Figure 1.6 CRC encoder and decoder

Sender Receiver
Encoder Decoder
Dataword Dataword
2s[3a[1]3% [Pa[22]1]2]
Accept
000

Decision
logic

Tn A

o

Syndrome

[s2[51]%]

Y Divisor

Generator dy d; d; dy

b
o]
=
o
£
& 2
AAL, Stk i]
[2s[2z[a: [a0] ra [T] o} >3]b, b1 [bo[a:[a1[%
Codeword Codeword

1. Resource Allocation

* In case of multiple users accessing same
resource

* In case of multiple processes accessing same
resource
* Example:

— Multiple users may be accessing same resource
(say printer), then OS allocates the printer based
on some algo (like FIFO for ex)

— CPU Scheduling algos (FIFO, SJF etc)

2. Accounting

* Statistics related to the resource usage by the
users — how much resource each user
consumes, what all resources a user uses etc.

* Can be used for billing purposes

* Can also help in reconfiguring system to
improve computing services

file:///C:/Users/User/Downloads/Memo_0OS_20230129.html 135/136

1/29/23, 4:33 PM Memo_OS_20230129

3. Protection and Security

* Protettion — access to system should be
controlled

— Multiuser systems should not allow an
unauthorized user to access content

— No interference between 2 processes
* Security — from external world

— To access a system, there must be some kind of
authorization (like a password)

-- Memo End --

file:///C:/Users/User/Downloads/Memo_0OS_20230129.html 136/136

