Machine Learning Overview

Machine Learning Workflow

Workflow 1. Access and load Data

<pre>import opendatasets as od</pre>
->od.download(dataset_url)
<pre>from urllib.request import urlretrieve</pre>
->urlretrieve(url, "path/file") # rewrite the file (becarefu
<pre>from zipfile import ZipFile</pre>
-> with ZipFile('filename.zip') as f:
f.extractall(path='filename')
import pandas as pd
->pd.read_csv("path/csvfile")

Workflow 2. Preprocess the Data -> Design Thinking

2.1 Exploratory Analysis

import numpy as np

-> np.arange()

-> np.mean()

import pandas as pd

- -> df.head(),
- -> df.sample()*
- -> df.isna().sum()
- -> df.unique()
- -> df.nunique()
- -> df.value_counts()
- -> df.sum()
- -> df.shape
- -> df.info()
- -> df.describe()
- -> df.corr() (Source) > (Correlation Explaination)

2.2 Visualization

```
import matplotlib.pyplot as plt
import seaborn as sn
import plotly.express as px
```

2.3 Imputing Missing Numeric Data

pandas -> pd.DataFrame -> df -> df.to_datetime() -> df.fillna() -> df.dropna(subset=[]) from sklearn.impute import SimpleImputer col1 col2 col3 col4 col5 col1 col2 col3 col4 col5 2.0 5.0 3.0 6.0 7.0 5.0 6 NaN 0 2 3.0 0 mean() 9.0 11.0 9.0 0.0 7.0 1 9 NaN 9.0 0 7.0 1 2 19 17.0 NaN 9 NaN **2** 19.0 17.0 6.0 9.0 7.0

Workflow 3. Drive Features Using the Processed Data

- Numerical features : StandardScaler or MinMaxScaler
- Categorical features OneHotEncoder
- Using Power BI to Prepare the Data

Numerical features

• StandardScaler

from sklearn.preprocessing import StandardScaler
-> df=StandardScaler().fit_transform(df)

MinMaxScaler

from sklearn.preprocessing import MinMaxScaler

-> df=MinMaxScaler().fit_transform(df)

Categorical Features

df.map({})

from sklearn.preprocessing import OneHotEncoder

One hot encoding involves adding a new binary (0/1) column for each unique category of a categorical column.

≻

Index	Categorical column
1	Cat A
2	Cat B
3	Cat C

Index	Cat A	Cat B	Cat C	
1	1	0	0	
2	0	1	0	
3	0	0	1	

pd.get_dummies(df['columnName'])

Pandas Get Dummies

Turn your Categorical Column (Ex: "Name")			Into Dummy Indicator Columns					
Index	Name	8/6/2020		Index	Liho Liho	Chambers	The Square	8/6/2020
0	Liho Liho	\$234.54		0	1	0	0	\$234.54
1	Chambers	\$45.74		1	0	1	0	\$45.74
2	The Square	\$56.22		2	0	0	1	\$56.22
3	Liho Liho	\$32.31		3	1	0	0	\$32.31

Workflow 4. Model Selection and Training

4.1 Model Selection

Supervised learning vs Unsupervised learning

Machine learning uses two types of techniques:(image source) -> Supervised learning, which trains a model on known input and output data so that it can predict future outputs. -> Unsupervised learning, which finds hidden patterns or intrinsic structures in input data.

Supervised Learning -Regression Problems

```
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import Ridge
-> *model = LinearRegression().fit(inputs, targets)*
-> *model = SGDRegressor().fit(inputs, targets)*
-> *model = Ridge().fit(inputs, targets)*
-> *model.coef_, model.intercept_*
-> y = w × x + b
• The numbers w and b are called the parameters or weights of the
model.
```

Here's a visualization of how gradient descent works:

Random Forest

from sklearn.ensemble import RandomForestClassifier
<img</pre>

src="https://miro.medium.com/max/5752/1*5dq_1hnqkboZTcKFfwbO9A.png"
width="800>

Supervised Learning - Classification Problems

Logistic Regression

from sklearn.linear_model import LogisticRegression

Descision Tree Classifier

from sklearn.tree import DecisionTreeClassifier

- -> Feature Important
- -> np.argmax(model.feature_importances_)
- -> df_fi = pd.DataFrame({'Feature': inputs.columns,

'Importance':

model.feature_importances_}).sort_values('Importance', ascending=False)

from sklearn.tree import plot_tree

from sklearn.tree import export_text

KNN K nearest neighbors Classification

from sklearn.neighbors import KNeighborsClassifier -> knn =
KNeighborsClassifier(n_neighbors=10)

Naive Bayes Classifier

Gradient Boosting Classifier

Unsupervised Learning

Clustering

Clustering is the process of grouping objects from a dataset such that objects in the same group (called a cluster) are more similar (in some sense) to each other than to those in other groups (Wikipedia).

Here is a full list of unsupervised learning algorithms available in Scikit-learn: https://scikit-learn.org/stable/unsupervised_learning.html

Here is a visual representation of clustering:

DBSCAN

from sklearn.cluster import DBSCAN

- -> model = DBSCAN(eps=0.5, min_samples=4).fit(inputs)
- -> model.labels_

K Means Clustering

from sklearn.cluster import KMeans

- -> model = KMeans(n_clusters=3, random_state=42).fit(inputs)
- -> model.cluster_centers_
- -> model.inertia_

The K-means algorithm attempts to classify objects into a pre-determined number of clusters by finding optimal central points (called centroids) for each cluster. Each object is classifed as belonging the cluster represented by the closest centroid.

Here's how the K-means algorithm works: 1. Pick K random objects as the initial cluster centers. 2. Classify each object into the cluster whose center is closest to the point. 3. For each cluster of classified objects, compute the centroid (mean). 4. Now reclassify each object using the centroids as cluster centers. 5. Calculate the total variance of the clusters (this is the measure of goodness). 6. Repeat steps 1 to 6 a few more times and pick the cluster centers with the lowest total variance.

Here's how the results of DBSCAN and K Means differ:

Hierarchical Clustering

Hierarchical clustering, as the name suggests, creates a hierarchy or a tree of clusters.

While there are several approaches to hierarchical clustering, the most common approach works as follows: 1. Mark each point in the dataset as a cluster. 2. Pick the two closest cluster centers without a parent and combine them into a new cluster. 3. The new cluster is the parent cluster of the two clusters, and its center is the mean of all the points in the cluster. 4. Repeat steps 2 and 3 till there's just one cluster left.

Principal Component Analysis (PCA)

from sklearn.decomposition import PCA

->model = PCA(n_components=2).fit(X)

->model.components_

Principal component is a dimensionality reduction technique that uses linear projections of data to reduce their dimensions, while attempting to maximize the variance of data in the projection.

Memo Machine Learning

t-Distributed Stochastic Neighbor Embedding (t-SNE)

from sklearn.manifold import TSNE inputs_transformed = TSNE(n_components=2).fit_transform(inputs)

Manifold learning is an` approach to non-linear dimensionality reduction. A commonly-used technique is t-Distributed Stochastic Neighbor Embedding or t-SNE.

Collaborative filtering with FastAI

Collaborative filtering is perhaps the most common technique used by recommender systems. *Collaborative filtering is a method of making predictions about the interests of a user by collecting preferences from many users. The underlying assumption is that if a person A has the same opinion as a person B on an issue, A is more likely to have B's opinion on a different issue than that of a randomly chosen person. - Wikipedia*

from sklearn.model_selection import train_test_split
-> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=20,
random_state=42)

Workflow 5. Evaluating Model

Evaluating Model - Score

-> model.score(inputs, targets)

from sklearn.metrics import accuracy_score

-> accuracy_score(targets, predictions)

Evaluating Model - confusion_matrix - Sensitivity and Specificity

from sklearn.metrics import confusion_matrix

		Predicted	
		Negative (N)	Positive (P) +
Actual	Negative -	True Negatives (T N)	False Positives (F P) Type I error
Actual	Positive +	False Negatives (F N) Type II error	True Positives (T P)

Evaluating Model - Loss/Cost Function

Overfitting vs. Underfitting

<img src="https://i.imgur.com/EJCrSZw.png" width=480

Bias vs. Variance

Regression Problems

RMSE

- -> np.sqrt(np.mean(np.square(targets predictions)))
- -> from sklearn.metrics import mean_squared_error
- -> mean_squared_error(targets, predictions, squared=False)

Geometrically, the residuals can be visualized as follows:

Classification Problems

cross entropy loss function

L1and L2 Regularization

Gradient Boosting

The term "gradient" refers to the fact that each decision tree is trained with the purpose of reducing the loss from the previous iteration (similar to gradient descent). The term "boosting" refers the general technique of training new models to improve the results of an existing model.

• Video Tutorials on StatQuest

Workflow 6. Save Model Using Joblib And Pickle

import pickle

- -> pickle.dump(model, "path/file")
- -> pickle.load("path/file")

import joblib

- -> joblib.dump(model, "path/file")
- -> joblib.load("path/file")

Approach	PROS	CONS	
Pickle	Quick Implementation Easy Readability	Python version issues. No stored results or data Only File Object	
Joblib	Quick Implementation Easy Readability Accepts Objects and String filenames Different compression options.	Python version issues.	
Proprietary	More Flexibility No Python version issues	Harder Readability Complexity	

-- Memo End --