
12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 1/29

Machine Learning Overview

Maching Learning vs Deep Learning

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 2/29

Machine Learning Workflow

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 3/29

Workflow 1. Access and load Data
import opendatasets as od

->od.download(dataset_url)

from urllib.request import urlretrieve
->urlretrieve(url, "path/file") # rewrite the file (becareful)

from zipfile import ZipFile

-> with ZipFile('filename.zip') as f:
f.extractall(path='filename')

import pandas as pd
->pd.read_csv("path/csvfile")

Workflow 2. Preprocess the Data -> Design
Thinking

2.1 Exploratory Analysis
import numpy as np

-> np.arange()

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 4/29

-> np.mean()

import pandas as pd

-> df.head(),
-> df.sample()*
-> df.isna().sum()
-> df.unique()
-> df.nunique()
-> df.value_counts()
-> df.sum()
-> df.shape
-> df.info()
-> df.describe()
-> df.corr() (Source) >(Correlation Explaination)

2.2 Visualization
import matplotlib.pyplot as plt
import seaborn as sn

import plotly.express as px

2.3 Imputing Missing Numeric Data

https://www.cuemath.com/data/how-to-calculate-correlation-coefficient/
https://www.youtube.com/watch?v=xZ_z8KWkhXE

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 5/29

pandas -> pd.DataFrame -> df
-> df.to_datetime()
-> df.fillna()
-> df.dropna(subset=[])

from sklearn.impute import SimpleImputer

Workflow 3. Drive Features Using the Processed
Data

Numerical features : StandardScaler or MinMaxScaler
Categorical features OneHotEncoder
Using Power BI to Prepare the Data

Numerical features
StandardScaler

from sklearn.preprocessing import StandardScaler
-> df=StandardScaler().fit_transform(df)

MinMaxScaler

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 6/29

from sklearn.preprocessing import MinMaxScaler
-> df=MinMaxScaler().fit_transform(df)

Categorical Features
df.map({})

from sklearn.preprocessing import OneHotEncoder
One hot encoding involves adding a new binary (0/1) column for each unique
category of a categorical column.

pd.get_dummies(df['columnName'])

Workflow 4. Model Selection and Training

4.1 Model Selection

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 7/29

Scikit-learn offers the following cheatsheet to decide which model to
pick for a given problem

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 8/29

Supervised learning vs Unsupervised
learning
Machine learning uses two types of techniques:(image source) -> Supervised
learning, which trains a model on known input and output data so that it can
predict future outputs. -> Unsupervised learning, which finds hidden patterns
or intrinsic structures in input data.

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 9/29

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 10/29

Supervised Learning -Regression Problems

from sklearn.linear_model import LinearRegression
from sklearn.linear_model import SGDRegressor
from sklearn.linear_model import Ridge

-> *model = LinearRegression().fit(inputs, targets)*
-> *model = SGDRegressor().fit(inputs, targets)*
-> *model = Ridge().fit(inputs, targets)*
-> *model.coef_, model.intercept_*

->

The numbers and are called the parameters or weights of the
model.

y = w × x + b

w b

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 11/29

Here's a visualization of how gradient descent works:

Random Forest
from sklearn.ensemble import RandomForestClassifier

<img
src="https://miro.medium.com/max/5752/1*5dq_1hnqkboZTcKFfwbO9A.png"
width="800>

Supervised Learning - Classification Problems

Logistic Regression

from sklearn.linear_model import LogisticRegression

https://miro.medium.com/max/5752/1*5dq_1hnqkboZTcKFfwbO9A.png

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 12/29

Descision Tree Classifier
from sklearn.tree import DecisionTreeClassifier

-> Feature Important
-> np.argmax(model.feature_importances_)
-> df_fi = pd.DataFrame({'Feature': inputs.columns,
'Importance':
model.feature_importances_}).sort_values('Importance',
ascending=False)

from sklearn.tree import plot_tree
from sklearn.tree import export_text

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 13/29

Support Vector Machine
from sklearn.svm import SVC

KNN K nearest neighbors Classification
from sklearn.neighbors import KNeighborsClassifier -> knn =

KNeighborsClassifier(n_neighbors=10)

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 14/29

Naive Bayes Classifier

Gradient Boosting Classifier

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 15/29

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 16/29

Unsupervised Learning

Clustering
Clustering is the process of grouping objects from a dataset such that objects
in the same group (called a cluster) are more similar (in some sense) to each
other than to those in other groups (Wikipedia).
Here is a full list of unsupervised learning algorithms available in Scikit-learn:
https://scikit-learn.org/stable/unsupervised_learning.html
Here is a visual representation of clustering:

https://en.wikipedia.org/wiki/Cluster_analysis
https://scikit-learn.org/stable/unsupervised_learning.html

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 17/29

DBSCAN
from sklearn.cluster import DBSCAN

-> model = DBSCAN(eps=0.5, min_samples=4).fit(inputs)
-> model.labels_

K Means Clustering
from sklearn.cluster import KMeans

-> model = KMeans(n_clusters=3, random_state=42).fit(inputs)
-> model.cluster_centers_
-> model.inertia_

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 18/29

The K-means algorithm attempts to classify objects into a pre-determined
number of clusters by finding optimal central points (called centroids) for
each cluster. Each object is classifed as belonging the cluster represented by
the closest centroid.

Here's how the K-means algorithm works: 1. Pick K random objects as the
initial cluster centers. 2. Classify each object into the cluster whose center is
closest to the point. 3. For each cluster of classified objects, compute the
centroid (mean). 4. Now reclassify each object using the centroids as cluster
centers. 5. Calculate the total variance of the clusters (this is the measure of
goodness). 6. Repeat steps 1 to 6 a few more times and pick the cluster
centers with the lowest total variance.

Here's how the results of DBSCAN and K Means differ:

Hierarchical Clustering
Hierarchical clustering, as the name suggests, creates a hierarchy or a tree of
clusters.

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 19/29

While there are several approaches to hierarchical clustering, the most
common approach works as follows: 1. Mark each point in the dataset as a
cluster. 2. Pick the two closest cluster centers without a parent and combine
them into a new cluster. 3. The new cluster is the parent cluster of the two
clusters, and its center is the mean of all the points in the cluster. 4. Repeat
steps 2 and 3 till there's just one cluster left.

Principal Component Analysis (PCA)
from sklearn.decomposition import PCA

->model = PCA(n_components=2).fit(X)
->model.components_

Principal component is a dimensionality reduction technique that uses linear
projections of data to reduce their dimensions, while attempting to maximize
the variance of data in the projection.

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 20/29

t-Distributed Stochastic Neighbor Embedding (t-
SNE)
from sklearn.manifold import TSNE

inputs_transformed = TSNE(n_components=2).fit_transform(inputs)

Manifold learning is an` approach to non-linear dimensionality reduction. A
commonly-used technique is t-Distributed Stochastic Neighbor Embedding or
t-SNE.

Collaborative filtering with FastAI
Collaborative filtering is perhaps the most common technique used by
recommender systems. Collaborative filtering is a method of making
predictions about the interests of a user by collecting preferences from many
users. The underlying assumption is that if a person A has the same opinion as
a person B on an issue, A is more likely to have B's opinion on a different issue
than that of a randomly chosen person. - Wikipedia

4.2 Training

https://medium.com/r/?url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FCollaborative_filtering

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 21/29

from sklearn.model_selection import train_test_split
-> X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=20,
random_state=42)

Workflow 5. Evaluating Model

Evaluating Model - K Fold Cross Validation

from sklearn.model_selection import KFold

-> *for train_index, val_index in KFold().split(X):*
-> *X_train, X_val = X.iloc[train_index], X.iloc[val_index]*
-> *y_train, y_val = y.iloc[train_index], y.iloc[val_index]*

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 22/29

Evaluating Model - Score

-> model.score(inputs, targets)
from sklearn.metrics import accuracy_score

-> accuracy_score(targets, predictions)

Evaluating Model - confusion_matrix - Sensitivity
and Specificity

from sklearn.metrics import confusion_matrix

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 23/29

Evaluating Model - Loss/Cost Function

Overfitting vs. Underfitting

<img src="https://i.imgur.com/EJCrSZw.png" width=480

Bias vs. Variance

https://i.imgur.com/EJCrSZw.png

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 24/29

Gradient Descent

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 25/29

Regression Problems

RMSE
-> np.sqrt(np.mean(np.square(targets - predictions)))
-> from sklearn.metrics import mean_squared_error
-> mean_squared_error(targets, predictions, squared=False)

Geometrically, the residuals can be visualized as follows:

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 26/29

Classification Problems

cross entropy loss function

L1and L2 Regularization

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 27/29

Gradient Boosting
The term "gradient" refers to the fact that each decision tree is trained with the
purpose of reducing the loss from the previous iteration (similar to gradient
descent). The term "boosting" refers the general technique of training new
models to improve the results of an existing model.

Video Tutorials on StatQuest

https://www.youtube.com/watch?v=3CC4N4z3GJc&list=PLblh5JKOoLUJjeXUvUE0maghNuY2_5fY6

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 28/29

12/26/22, 9:50 AM Memo_Machine_Learning

file:///E:/CS54/CS_Markdown/HTML_Memo/Memo_Machine_Learning.html 29/29

Workflow 6. Save Model Using Joblib And Pickle

import pickle

-> pickle.dump(model, "path/file")
-> pickle.load("path/file")

import joblib

-> joblib.dump(model, "path/file")
-> joblib.load("path/file")

-- Memo End --

