1/29/23, 5:22 PM Memo_COA

Computer Organization and Architecture

SOURCE CODE TO MACHINE LANGUAGE
source

case HOWSHTIER
d 18,53 say 'Shipped wvia:
casa HOWSHIDP T

B 18,53 say

@ 18,53 say

gse HOWSHIE
'\ E ,

creates

machine
language

10001004001 001004001 0
1140410001 111001 What
1001000 111004010 hardware
1000101000 1040
100400010404 sees
1001010041
10011011
110104

v

What hardware does:

-

m INPUTINTO MEMORY
m CALCULATE
COMPARE
COPY
OUTPUT
GO TO

file:///C:/Users/User/Downloads/Memo_COA.html

programmer

1112

1/29/23, 5:22 PM

Memo_COA

High Level Languages

Compiling

dcripting/Interpreted Languages

Flow of Compilation

and Dissasembly

Perl, Python, Shell, Java

High/Middle Level Languages

C,C++
(What Most Malware Is Written In)

Assembly Language

(First Layer of Human Readable Code)

Intel X8, etc.

Machine Code

Hexadecimal representations of Binary Code Read

By The Operating System

Binary code

Binary code read by hardware
Not Hurman Readable

Program
1

TS B 0 0 0 0 8 P 8 1 L B ML |

file:///C:/Users/User/Downloads/Memo_COA.html

James Tam

Dissasemble
High Vs. Low Level Languages
E.g., English, French, Spanish, High
Human languages Chinese, German, Arabic etc. level
High level
programming e P E.g., Python, Java, C++
language for (i=1;i==10; i++)
Low level
programming — Assembly
language MOV #10, RO
‘ Machine language & Binary
10100000 1010 00
Computer hardware Low
level
High Level L temp = vIKl
i evel Language
o program . * VIK = vk)
v[k+1] = temp;
Compiler
= mov BL, 02h
= mov AX,0A56h
= mul BL
Assembler
Machine Language o 11t 5io1 ioon oo R

2/112

1/29/23, 5:22 PM Memo_COA

Number System

Real Number System

Real Number System

Examples of rationalnumbers, integers, whole numbers, natural numbers,
and irrationalnumbers

Rational

Integers

Irrational

Whole Numbers

Natural Numbers

72 431

Number System Conversion

Types of Number System ‘% ﬁ;ﬁ'{ﬁ.i.}.ﬂi

Number System

N,

Decimal Binary Octal Hexadecimal
Numbers Numbers Numbers Numbers
Base 10 Base 2 Base & Baselb
(0-9) (0.1 (0-7) (0-9,A-F)

file:///C:/Users/User/Downloads/Memo_COA.html 3/112

1/29/23, 5:22 PM

Memo_COA

Number Systems Conversion Chart

Binary
Place 21 2 2% 29 27 25 25 24 22 22 2+ 29 2t Xz z2 p ol
Weight | 2048 1024 512 256 128 64 32 16 8 4 2 1 0.5 0.25 0.125 | 0.0625

Binary, Hex, and Octal Conversions

Binary Octal Hexadecimal Decimal
0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101] E El
0110 6 6 6
0111 7 7 7
1000 10 8 8
1001 11 9 9
1010 12 A 10
1011 13 B 11
1100 14 C 12
1101 15 D 13
1110 16 E 14
1111 17 F 15

Binary Number System

Bits and Bytes
A single unit of data is called a bit, having a value of 1 or 0.
Computers work with collections of bits, grouping them to represent larger pieces of data,
such as letters of the alphabet.

Eight bits make up one byte. A byte is the amount of memory needed to store one

Methodology

1. Convert from decimal to binary

Divide the decimal by the largest binary weight
it is divisible by and place a “1” in that column.
Then select the next largest weight, if it is

divisible put a “1” in that column otherwise
place a “0” inthe column. Continue until all the
columns have either a “1” or “0” resulting in a
binary expression.

2. Convert from decimal to hex.

Convert to binary first, then group the binary in
groups of 4 beginning on the right working to
the left. For each group determine the hex

value based on the table to the left.
3. Convert to octal

Convert to binary first, then group the binary in
groups of 3 beginning on the right working to
the left. For each group determine the octal

value based on the table to the left.

Number System

alphanumeric character.
With one byte, the computer can represent one of 256 different symbols or characters.

o

o
]

1

file:///C:/Users/User/Downloads/Memo_COA.html

1

1

8 bits = 1 byte

1 1

1

1

4112

1/29/23, 5:22 PM Memo_COA

What is the Binary 2 A
2 17-14-End
Number System? , M
2 (Twos) 1/2 (Halves) 2 4-0
2x2 (Fours) Ones 1/(2x2) = 1/4
2x2x2 {Eaghrs]_\\\ l //7;;;'(2@2) - 1/8 2 2-0

1101 .101 startl -0

Zx Smaller 1 0 0 0 1 1
i o
2N Electrical 4 U

Complement

)1'Sand 2'S Complements of Binary Numbers

Finding the 2 's Complement

The 2's complement of a binary number is found by adding 1t o the LSB of the 1's complement.

2’s complement = (1’s complement) + 1 Example 17: Find the 2’s Complement of 10110010

Negative number

10110010 Binary number

01001101 I's complement
+ | ¢ Add |
o i o i mp 01001110 [2's complement |
Carry

in| (add 1)

I's complement

Input bits
Adder

Output bits (sum)

2’s complement 0) 0 1 0

binary codes — 00000 o binary codes

00001

finish up all ones 11111 count up from all zeros
at “11 o’clock” nml““" 000120011 at “midnight”
00100
11100 -
2710 1,
11011 smooth ooto1
11010 transition at 0 00110
clockwise is bigger
N 00111
L1001 counterclockwise smaller
... until the “big break”
11000 01000
10111 01001
10110 01010
10101 01011
positive #s =

negative #s =
leading 1 codes the “big break”
comes here

leading 0 codes

file:///C:/Users/User/Downloads/Memo_COA.html 5/112

1/29/23, 5:22 PM Memo_COA

i Complements of numbers

(r-1)’s Complement

*Given a number N in base r having n digits,
sthe (r- 1)’s complement of N is defined as
(r-1)-N

*For decimal numbers the
baseor r=10and r- 1= 9,

*so the 9’s complement of N [pigit [Digic | Next | Next | First
fe (10"-1)-N n ol |digit |digit | digit

+ There are two types of complements for each base-r system: the radix complement and
diminished radix complement.

=—— > the r's complement and the second as the (r - 1)'s complement.

M Diminished Radix Complement

Given a number N in case » having » digits, the (» — 1) 's complement of N is defined
as (7 — 1) — N. For decimal numbers, =10 and » — 1 =9, so the 9's complement of N
is (10" - 1) = N.

Example:
The 9's complement of 546700 is 999999 — 546700 = 453299.
The 9's complement of 012398 is 999999 — 012398 = 987601.

« For binary numbers, r=2 and r—1 = 1, so the 1's complement of Nis (27— 1) — N.
Example:
The 1's complement of 1011000 is 0100111

\jhe 1's complement of 0101101 is 1010010 /

Precision floating-point

file:///C:/Users/User/Downloads/Memo_COA.html 6/112

1/29/23, 5:22 PM Memo_COA

Floating point numbers— the IEEE
standard

IEEE Standard 754

2 Most (but not all) computer manufactures use |IEEE-754
format

2 Number represented:
(-1)8 * (1.M)*2(E - Bias)

2 main formats: single and double

1 8 23
Single ‘S‘ Exponent ‘ Mantissa | BlaS = 127
1 11 52
Dou__b__le_ H Exponent ‘ Mantissa ‘ Bias=1023

Floating-Point Numbers

“ Examples of floating-point numbers in base 10 ...
<+ 5.341x10%, 0.05341x10%, —-2.013x10"", -201.3x1073

decimal point

++ Examples of floating-point numbers in base 2 ...
< 1.00101x223, 0.0100101x225, —1.101101x2-3, —1101.101x25
binary point

< Exponents are kept in decimal for clarity
< The binary number (1101.101), = 23+2242042-142-3 = 13.625

% Floating-point numbers should be normalized

< Exactly one non-zero digit should appear before the point
* |n a decimal number, this digit can be from 1 to 9
* In a binary number, this digit should be 1
< Normalized FP Numbers: 5.341x10% and —1.101101x2-3
< NOT Normalized: 0.05341x10% and —1101.101x2-6

Floating Point ICS 233 - KFUPM @ Muhamed Mudawar slide 4

file:///C:/Users/User/Downloads/Memo_COA.html

7112

1/29/23, 5:22 PM Memo_COA

Normalized Floating Point Numbers

% For a normalized floating point number (S, E, F)

s E | ST |

<+ Significand is equal to (1.F), = (1.£,5...),
< |IEEE 754 assumes hidden 1. (not stored) for normalized numbers
< Significand is 1 bit longer than fraction

% Value of a Normalized Floating Point Number is

(~1)5 % (1.F); x 203®

(=1)% x (1.fi K156, ...), x 2valE)

(=1)Sx (1 + fix271 4 ,x22 4+ £x23 4 f,x24), x 2valf)

(-=1)Sis 1 when Sis 0 (positive), and —1 when Sis 1 (negative)

Floating Point ICS 233 - KFUPM @ Muhamed Mudawar slide 8

Floating-Point Representation

<+ A floating-point number is represented by the triple

<» Sis the Sign bit (0 is positive and 1 is negative)
= Representation is called sign and magnitude

<+ Eis the Exponent field (signed)
* Very large numbers have large positive exponents
= Very small close-to-zero numbers have negative exponents
= More bits in exponent field increases range of values

<+ Fis the Fraction field (fraction after binary point)
= More bits in fraction field improves the precision of FP numbers

|S‘ Exponent | Fraction ‘

Value of a floating-point number = (-1)° x val(F) x 2val(f)

file:///C:/Users/User/Downloads/Memo_COA.html

8/112

1/29/23, 5:22 PM Memo_COA

Biased Exponent - Cont'd

< For double precision, exponent field is 11 bits

< E can be in the range 0 to 2047

< E=0and E =2047 are reserved for special use

<+ E =1 to 2046 are used for normalized floating point numbers

< Bias = 1023 (half of 2046), val(E) = E — 1023

< val(E=1) = -1022, val(E=1023) = 0, val(E=2046) = 1023

% Value of a Normalized Floating Point Number is

(=1)S x (1.F), x 2E-Bias
(-1)8 x (1. 641, ...), x 2E-Bias

(—1)8 x (1 + £,x21 + £,x22 4 fx23 4 f,x24), x 2E-Bias

‘ 1=bit | 11=bits S2-hits |

| l—hdtl 11-hits

S2-bits

11 bit sdder

s

11 hit adder

E3X53
vedic multiplier

Normuliss tion)

ASCII

file:///C:/Users/User/Downloads/Memo_COA.html

9/112

1/29/23, 5:22 PM Memo_COA

ASCII control ASCI| printable Extended ASCII
characters characters characters

00 MNULL (Null character) 32 space G4 @ 96) 128 ¢ 160 a 192 L 224 [+]
01 SOH (Startof Header) 33 | 65 A 97 a 129 i 161 i 193 L 225 1]
02 STX (Start of Text) 34 - 66 B 96 b 130 [} 162 6 194 T 226 o]
03 ETX (End of Text) 35 # 67 [+ 99 c 131 a 163 a 195 I3 227 o]
04 EOT (End of Trans.) 36 % 68 D 100 d 132 a 164 A 196 - 228 @
05 ENQ (Enquiry) T % 69 E 101 e 33 a 16 AN 197 4+ 228 0O
06 ACK (Acknowledgement) 38 & T0 F 102 f 134 a 166 2 198 a 230 M
07 BEL (Bell) 39 g 1 G (103 g 135 ¢ 16T ®° 199 A 231 p
08 BS (Backspace) 40 (T2 H 104 h 136 é 168 2 200 L] 232 b
08 HT (Horizontal Tab) 41) T3 | 105 i 137 é 169 @ 20 P 233 u
10 LF (Line feed) 42 * T4 L 106] 138 é 170 = 202] 234 1]
11 VT (Vertical Tab) 43 + 75 K 107 k 139 1 m e 203 = 2385 u
12 FF (Form feed) 44 5 76 I 108 | 140 if 172 Y 204 -] 236 ¥
13 CR (Carriage return) 45 - 77 M 109 m 141 1 173 i 205 = 237 Y
14 80 (Shift Out) 46 o 78 N 110 n 142 A 174 « 206 ¥ 238 -
15 Si (Shift In} 47 1 79] m [143 A 175 » 207 = 239 -
16 DLE (Datalink escape) 48 0 80 P 112 p 144 E 176 208 [} 240 =
17 DC1 (Device control 1) 49 1 81 Q 113 q 145 @ 177 = 209 B 24 E
18 DC2 (Device control 2) 50 2 8z R 114 r 146 & 178 ? 210 E 242 _
189 DC3 (Device control 3) 51 3 83 S 115 H 147 & 179 21 E 243 %
20 DC4 (Device control 4) 52 4 a4 T 116 t 148 [} 180 4 212 E 244 1
21 NAK (Negatve acknowl.) 53 5 85 U "7 u 149 o 181 A 213 1 245 §
22 8YN (Synchronous idie) 54 [} 86 v 118 v 150 a 182 A 214 I 246 *
23 ETE (End of trans. block) 55 7 a7 w 119 W 151 '} 183 A 215 i 247 .
24 CAN (Cancel) 56 8 88 X 120 X 152 ¥ 184 © 216 1f 248 =
25 EM (End of medium) 57 9 88 Y 121y 53 O 185 4 27 4 248 -
26 SUB {Substitute) 58 90 z 122 oz 54 O 186 | 218 , 250 -
27 ESC (Escape) 59 ; 91 [123 155 e 187 3 219 J 21 0
28 FS (File separator) 50 < 92 \ 124 | 156 £ 188 4 220 g 2| @
29 GS (Group separator) 61 = 93 1 125 1 157 4] 189 ¢ 221 H 253 2
30 RS (Record separator) 62 > 94 £ 126 - 158 x 180 ¥ 222 1 254 []
31 us (Unit separator) 63 ? 95 _ 159 f 19 1 223 = 256 nbsp
127 DEL (Delete)

Representing Text

ASCII Code Chart

0 1 2 3 4 5 6 7 8 9 A B C D E F
0| NUL | SOH|STX|ETX|EOT|ENQ|ACK|BEL| BS | HT | LF | VT | FF | CR | SO | SI
1|DLE|DC1|DC2|DC3|DC4|NAK|SYN|ETB|CAN| EM |SUB|ESC| FS | GS | RS | US
2 ! " # $ % & ' () * + ’ /
3] o 1 2 3 4 5 6 7 8 9 2 ; < = > ?
4 @ | A | B € D E F G H I J K L M N 0
5| P Q | R] T U v iw|[x]| Y|z [\ 1 » |
6| - a b c d e f g h i j k 1 m n o
7l p q d s t u v w X y z { | } ~ |DEL

01001000 | 01100101 | 01101100 | 01101100 | 01101111 | 00101110
H e | | o
Instructor: Tian-Li Yu Data Storage

Bitwise Operation

Bitwise Operators

int a=10, b =2 for all examples below

"~ Bitwise unary NOT ~a =11
& Bitwise AND a&b 2
| Bitwise OR alb 10
5 Bitwise Ex-OR a’b
>> Shift right a>>1

55> Shift right zero fill a»>>1
<< Shift left a<<l 20
&= Bitwise AND assignment al=b 2
|= Bitwise OR assignment al=b 10
A= Bitwise Ex-OR assignment ar=h

>>= Shift right assignment az»=1

Sam= Shift right zero fill assignment a>»>=1

<<= Shift left assignment a<e=1 20

Startertutorials.com

file:///C:/Users/User/Downloads/Memo_COA.html 10/112

1/29/23, 5:22 PM Memo_COA
7 6 > 4 3 2 1 0

SHIFT
LEFT

|

=
[
—
—
L]
=
—
L]

SHIFT
RIGHT

|

=
—
=
=
—
—
=
L

Machine Language

Machine Language

+ Instructions, like registers and words of data, are also 32 bits
long
— Example: add $t0, $s1, $s2
— registers have numbers, $t0=8, $s1=17, $s2=18

* |nstruction Format:

[000000]10001] 10010] 01000] 0000O] 100000 |
[op [rs] rt | rd [shamt [funct |

« Can you guess what the field names
stand for?

op = Basic operation of the instruction: opcode

rs = The first register source operand

rt = The second register source operand

rd = The register destination operand

shamt = shift amount

funct = function code 25

Assembly Language

file:///C:/Users/User/Downloads/Memo_COA.html 11/112

1/29/23, 5:22 PM

Memo_COA

p
Assembly Language

» Tied to the specifics movl $0, %ecx
of the underlying 10OP: b1 $1, vedx
machine jle .endloop

addl $1, %ecx

« Commands and movl %edx, %eax
names to make the ;‘;dl $iiszea"
co.de readable and FaTl Wady, BEEx
writeable by humans addl %eax, %edx

addl %eax, %edx

* Hand-coded RS, Sy Rada

jmp .endi
.else:
assembly cc_Jqle may i T
be more efficient .endif:
jmp .loop
 E.g., IA32 from Intel .endloop:

-

Reading IA32 Assembly Language ;4

» Assembler directives: starting with a period (“.”)
o E.g., “.section .text” to start the text section of memory
o E.g., “.loop” for the address of an instruction

 Referring to a register: percent size (“%")
o E.g., “Y%ecx” or “Y%eip”

* Referring to a constant: dollar sign (“$”)
o E.g., “$1” for the number 1

« Storing result: typically in the second argument
o E.g. "addl $1, %ecx” increments register ECX
o E.g., “movl %edx, %eax” moves EDX to EAX

* Comment: pound sign (“#”)
o E.g., “# Purpose: Convert lower to upper case”

&

file:///C:/Users/User/Downloads/Memo_COA.html

12/112

1/29/23, 5:22 PM

Memo_COA

* High level language & ¥

m As stated earlier, a program written in any programming language is a
set of logically related instructions. These instructions have two parts, as
shown in the following figure:

= The two parts of a programming language instruction are:

m ,Operation code (opcode): This part instructs a computer about the

operation to be performed.

n ,Operand: This part instructs the computer about the location of the data on
which the operation specified by the opcode is to be performed.

e | (&=)

= For example, in the instruction Add A and B, Add is the opcode and A

and B are operands

NIIT

Hai Phong Seftware Park 11

Compiler and Assember

Compiling and running your

program

B

Every Machine like, Toshiba
and Dell or HP, has it own
machine codes. So it is not
right to convert from high
level language to machine
code directly.

file:///C:/Users/User/Downloads/Memo_COA.html

Your program |, High Programming
in C++ languages

When you Compile your program: The compiler reads
your code and if it contains no mistakes it convert it to
assembly code readable by the operating system.

k|

Your program
in Assembly

When you Run your program: The Operating system
reads your assembly program and it convert it to
machine code readable by the Machine hardware.

Your program
in Machine
code

13/112

1/29/23, 5:22 PM Memo_COA

Source Code ...
i
Pre Processor

Pre-processed .-
Code ...

Compiler

Target .e"--_r.___,.__......-
Assembly Code

Assembler

Relocatable , ..~
Machine Code .
* —+ Library files/
Linker Relocatable
= “— modules
Executable
Machine Code

h".i

Loader

Memory

COMPILER VS LINKER VSLOADER

LOADER

E EEEEEEEEEER
A part of an operating
system that is

COMPILER LINKER
EEE I EEEEE NN EEEEEEEEEEEEHR
A software that A computer utility

transforms computer | program that takes one

responsible for loading

code written in one or more object files

programming generated by a programs to memory

language into another | compiler and combines

programming them into a single

language executable file

Transforms the Combines multiple Prepares the

source code into object code and links executable file for

running

object code them with libraries

Visit www.pediaa.com

file:///C:/Users/User/Downloads/Memo_COA.html 14/112

1/29/23, 5:22 PM Memo_COA
Logic Design

* Logic Gates

a3 lD-F B:’_ 8) F

Buffer AND XOR
F=A F=AB FA+B F = ADB
AlF A B[F ABIF ABI|F
00 0 010 0 00 c 010
1|1 01]0 011 0 1|1

100 1 041 10]1

1 141 1 1]1 11])0

A{>er sl TDeF pT)Def

Inverter NAND NOR_ NOR
F=A F=AB F=A+B F = AEB
AlF ABIF A B}F ABLIF
0f1 001 0 0|1 0 0|1
110 0 1{1 c 110 0110

1 0¢1 1 040 1 00

1110 11]0 1 1]1

e AND Gate

AND Gate Resistor-Transistor Logic Circuit

uuuuuuuuuu

A B AANDB

111 1

ProjectloT123.com

* OR Gate

file:///C:/Users/User/Downloads/Memo_COA.html

15/112

1/29/23, 5:22 PM

e NOT Gate

file:///C:/Users/User/Downloads/Memo_COA.html

ouT

_l._lm:)m

-0 - O P

e . A = |

Memo_COA
+Vcce
T
Transistor
Switches
ouT
T2 "a=A+B
R2

16/112

1/29/23, 5:22 PM

What is a
NOT Gate?

C
PNP BJT

e XOR Gate

file:///C:/Users/User/Downloads/Memo_COA.html

Memo_COA

C

E
NPN BJT

171112

1/29/23, 5:22 PM

A
B

Memo_COA

XOR GATE Truth Table
INPUT | OUTPUT
A B AXORB
(& oo 0
C=A®B 0|1 1
BOOLEAN EXPRESSION L !
1 1 0
. A s Inputl
A-BvAB | o
(A+B) (A+B) | I—InputZ

QOutput

e

.. iIs equivalent to . .

-
o

file:///C:/Users/User/Downloads/Memo_COA.html

B

A®B = AB +AB

ProjectloT123.com

S
D— AB +AB

18/112

1/29/23, 5:22 PM Memo_COA

* NAND Gate

file:///C:/Users/User/Downloads/Memo_COA.html 19/112

1/29/23, 5:22 PM Memo_COA

NAND Gate

Voo Svymbol:

b —
D

Truth takble: HAND Gate

A B cuat

(%] e 1
%] 1 1
1 e 1
@ 1 1 8
The NAND gate as a universal
gate
Logic function NAND gate only
A—>o0— A AT >»A

e Half-Adder vs Full-Adder

file:///C:/Users/User/Downloads/Memo_COA.html 20/112

Memo_COA

1/29/23, 5:22 PM

e Half-Adder

Logic Diagram:

o
C

C fews)

A —
Sum A A+B
B ADB

T A®B

A+B

Figure-1 : a)Half Adder b)XOR implementation using NAND gates

e Full Adder

file:///C:/Users/User/Downloads/Memo_COA.html 21/112

1/29/23, 5:22 PM Memo_COA
A A\ Input Output
,)D— D—)s A B | Cin |Sum |Carry|
7 0 0 0 0 0
B
0 0 1 1 0
0 1 0 1 0
0 1 0
Ci : :
Cout 1 0 0 1 0
—\ 1 0 1 0 1
/ 1 1 0 0 1
1 1 1 1 1
A Cout
— — ou
|])—cout 5| ruu
B—B S—A wAiE ADDER S
Cin B ADDER ¢ S Cii
A
Carry In AND OR
Carry Out
AND
] —

e 4 Bit Full Adder

file:///C:/Users/User/Downloads/Memo_COA.html

22/112

1/29/23, 5:22 PM

Carry In

Memo_COA

M ="

= >

Carry Out

L1 >

Carry Out

1 >
Sum

Carry Qut
1 >

Carry Out

¢ Substract

file:///C:/Users/User/Downloads/Memo_COA.html

23/112

1/29/23, 5:22 PM Memo_COA

238 Az B; Az B, Ay B, Ay
v,
A Yy 1 X X
Cy Cy L] Cy
— | FA | Fa = FA |+ FA p—
T L l T T
C, S S 5 Sy

Fig. 1 Modular design of 4-bit adder/subtractor

I”I'U:‘ A=0010 1010, B=000010111)

Az By AgBy AgBs Ay By MBy MBy AB AgBy

olo| ofo] 1|o] ofi] tlol ofr] 1] ofi]

Ay By Ay By Ay By, A B Ay By Ay By Ay By A B
—: Comt 4008 Cia I Con 4008 Cal-
L L, L x, I, I I L
0 ‘II 0 I |) |] | | |
7 2% 5 M n n 2 p.ol
Outpul sum -.-l remainder

Circuits as Memory

* SR Filp Folp

file:///C:/Users/User/Downloads/Memo_COA.html

0z Add
1: Subtract

Complementing
switch

| {subtract)

e

[

0 (add)

24/112

1/29/23, 5:22 PM Memo_COA

‘4 Gated Latch-Clocked RS Flip-flop

-
: Q
Enable or
Cock
: a ¢
2
R —
A clocked SR flip-flop. Logical Svm bol
R S Enable Q,
0 0 X 0, s Q
0 | | 1
| 0 1 0 [
| | | Not allowed
X X 0 Q. —R Q —
Truth table
S R !
R (reset) ’ 1 R 0 0 0
1 0j]1 O
0 O]1 O (afterS=1,R=0)
0 110 1
o) 0 0 0/0 1 (afterS=0,R=1)
S(set) 1 1{0 O
(a) Logic diagram (b) Truth table
R
Q a s R Qt+1)
0 0 o0 0
ﬂ(cwocﬁguls? 0 0 1 0
0 1 0 1
o 0 1 1 Intermediate
s 1 0 0 1
a) Logic diagram
1 0 0
fig: Clocked SR flip flop
1 1 0 1
1 1 1 Intermediate
b) Truth table

Computer Orginization and Archetiture

Instruction Set Architecture - Interface of S/W and
H/w

file:///C:/Users/User/Downloads/Memo_COA.html 25/112

1/29/23, 5:22 PM Memo_COA

Instruction Set Architecture: Critical Interface

E S~
software ~ \i\/\

instruction set

()

hardware

= Properties of a good abstraction
» Lasts through many generations (portability)
Used in many different ways (generality)
¢ Provides convenient functionality to higher levels
¢ Permits an efficient implementation at lower levels

Computer Architecture- 8

The Instruction Set Architecture

Application (browser)

I Operating
Software Compiler | gystem

Datapath & Control || Memory I/O System

Hardware [— e
Circuit Design

file:///C:/Users/User/Downloads/Memo_COA.html 26/112

1/29/23, 5:22 PM Memo_COA

ISA
Instruction Set Architecture

= The computer ISA defines all the_ programmer-visible
components and operations of the computer

= Memory organization
= address space -- how may locations can be addressed?
= addressibility -- how many bits per location?

= Registerset
= how many? what size? how are they used?

= [nstruction set
= opcodes
= datatypes
= addressing modes

= ISA provides all information needed for someone that
wants to write a program in machine language (or translate
from a high-level language to machine language).

BYU CS 224 ISA 5

Instruction Set Architecture (ISA)

* ISA is the interface provided by
the hardware to the software

Algorithms

— Defines the available:
* instructions C, C++
* registers ISA

* addressing modes
* memory architecture
= interrupt and exception handling
= external I/O
— Syntax defined by assembly
language

Functional Units

Transistors

|
|
|
|
Logic Gates ‘
|
|

. . Electrons
= Symbalic representation of the
machine instructions Hardware!
— Examples: x86, ARM, HCS12
Mike Hotenders, . holendersk@u @ TU /e =

file:///C:/Users/User/Downloads/Memo_COA.html 27112

1/29/23, 5:22 PM Memo_COA

Three Examples of Instruction Set Encoding

Operations &

Address Address
no of operands

Address Address
specifier | field 1 *® & = i)

specifier n field n

Variable: VAX (1-53 bytes)

Operation Address Address Address
field 1 field 2 field3

Fixed: DLX, MIPS, PowerPC, SPARC

Operation K Address
Specifier field
. Address Address -
; Idress
Operation Specifier Specifier 2 Address field

Address)

Operation Specifier Address g:l‘:;iss

field 1 -

Hybrid : IBM 360/370, Intel 80x86

| EECC551 - Shaaban I—

#20 Lec#2 Fall 2000 9-12-2000

CICS vs RICS

CISC vs. RISC

Complex Instruction Set Reduced Instruction Set

Computer Computers

Many instructions Few instructions

= e.g., 75-100 = e.g., 30-40

Many instructions are Smaller chip, smaller pin
macro-like count, & very low-power
= Simplifies programming consumption

Most microcontrollers are = Simple but fast instructions
based on CISC concept Harvard architecture,

= e.g., PDP-11, VAX, instruction pipelining

Motorola 68k Industry trend for

= PIC Ig:an-exception microprocessor design

= e.g., Intel Pentium, PIC 2

file:///C:/Users/User/Downloads/Memo_COA.html 28/112

1/29/23, 5:22 PM

RISC

Memo_COA

From Computer Dasktop BEncyelopeda

21998 The Computer Languags Co

CISC

Machine instructions

Microcode cormersion

Micrainstructions

Microinstruction
execition

32-bit RISC-V Instruction Formats

Machine instructions

Instruction

execution
Instruction

31 |30(29 |28 27 26|25|24 |23 22|21 20

Formats
Registeriregister funct? rs2
Immediate imm(11:0]
U
pper_ imm[31:12]
Immediate
Store imm[11:5] rs2
Branch [12] imm(10:5] rs2
Jump [20] imm[10:1] [11]

® opcode (7 bit): partially specifies which of 1e 6 types of instruction formats
® funct? + functd (10 bit): combined with opcode, tese two fields describe what cperation to perform

® ra1 (5 bit): specifies register containing first operand

® rs2 (5 bit}: specifies second register operand

® rd (5 bit):: Destination register spacifies register which will receive result of eomputation

19|18 (17 (16 (15|14 (13|12 (11|10|9|8B|7

rs1 funci3 rd
rs1 funct3 rd
rd
rs1 funct3 imm([4:0]
rs1 funci3 imm[4:1] m
imm[18:12] rd

6|5(4|13(2|1(0

opcode

opcode
opcode

opcode
opcode

opcode

Interface

Data
Interface

Instruction : 4 RISC

Register File

Configurable
Interface

Memory Architecture

file:///C:/Users/User/Downloads/Memo_COA.html

Execution Pipeline

Decode/Optimize
Execute
Memory Access

29/112

1/29/23, 5:22 PM Memo_COA

Von Neumann vs. Harvard

Architecture
Memory
Data + Code
Data Address
Data
Vo ' Vo
Deavices Davices
Von Neumann Machine Harvard Machine

2w 2 o@w 8

ISA: STORAGE RESOURCES

* | "Harvard architacture™
Separate instruction and "'“*f":(T--!vr
data memaories st ruction
HIBETHrY
FIE T
* Parmit use of single
clock cycle per Register file
instruction Bx 16
implementation
* Duetouseof cache™in | 2uig
modern computer

architectures, it is a faidy
realistic model

Classification of ISA (or) Types of ISA

Stack Architecture

Accumulator Architecture
Instruction Set
Architecture

General Purpose Register (GPR) Architecture

L

) Register-Register Architecture

HRegister - Memory Architecture

>1\'Iemor_\' - Memory Architecture

file:///C:/Users/User/Downloads/Memo_COA.html

30/112

1/29/23, 5:22 PM Memo_COA

. Register - Register Register - Memory
Stack Architecture Accumulator Architecture Architecture i
Frocessor Processor [Processor Registers [Frocessor Registers
TOS Stack | |
l U_Hﬁ Accomulator 1
I | L
L, =
E—— 0
Rlemmory Rlemory Rlemory Melnory
Lo

ISA - MIPS Instrucstion Foramt and Addressing
Model

i MIPS Design Paradigms

= Simplicity favors regularity
« all instructions single size
= three register operands in arithmetic instr.
= keep register fields in the same place
= Smaller is faster
= 32 registers
= Make good compromises

= large addresses and constants versus unique
instruction length

= Make the common case fast
= PC-relative addressing for conditional branches

file:///C:/Users/User/Downloads/Memo_COA.html

31/112

1/29/23, 5:22 PM

Memo_COA

MIPS Organization So Far

Processor
Memory
Register File
1...1100
src1 addr-4» src1
5 o data
src2 addr—~» 32
d S registers .
dst ad ’75"($zer0 - $ra) srep read/write
ite dat dat addr
write aa—ﬁ» Z; ata - 2%
32 bits - weras
branch offset read datg
52
write data 0...1100
72 0...1000
4 | 5[(6|7 |0...0100
OF1f2(3]0...0000
(32 bits word address
(binary)

byte address
(big Endian)

34

'

* General purpose and special purpose registers

The MIPS ISA - Register File

* When writing assembly, these registers can be referenced by
their address (number) or name

i

Name | Purpose # Name | Purpose
$0 | $zero | Constant zero $16 | $s0 Temporary — Callee-saved
$1 | $at Reserved for assembler $17 | $s1
$2 | $v0 Function return value $18 | $s2
$3 [$v1 $19 | $s3
$4 | $a0 Function parameter $20 | $s4
$5 | $a1 $21 | $s5
$6 | $a2 $22 | $s6
$7 | $a3 $23 | $s7
$8 | $t0 Temporary — Caller-saved $24 | $18 Temporary — Caller-saved
$9 | 5t1 $25 | $t9
$10 | $t2 $26 | $k0 Reserved for OS
$11 | $t3 $27 | $k1
$12 | $t4 $28 | $gp Global pointer
$13 | $t5 $29 | $sp Stack pointer
$14 | 5t6 $30 | $fp Frame pointer
G $15 | $t7 $31 | $ra Function return address
.,
53
Who saves what?
RO $0 __ | constanto R16 |_Ss0 |
R1 Sat Reserved Temp. R17 $s1 Callee Save
R2 $v0] R18 $s2 Temporaries:
R3 Svl Return Values R19 §s3 May no'tnbe .
R4 [Sa0 | — | R20 [354 it
R5 Sal Procedure R21 $s5 cedures
R6 [$a2 R22 | 556
R7 [sa3 R23 | $s7 | |
R8 $t0] R24 ﬁ Caller Save
R9 St1 Caller Save R25 $t9 __ |Temp
Caller Save R10 | &2 Temporaries: R26 $ko Reserved for
If the callelr uses R11 3§83 :\:\Iraevr:r:tten R27 [Ski | ____| Operating Sys
NS Ri2 [Sta by caed Rg | Sgp | _ | iobaleinter
must stave them R13 [st5 procedures R29 $SP _] StaacekePoai\r’\:er
in case the callee R14 | st6 R30 St |] Erame Pointer
overwrites them. R15 | $t7 R31 $ra Return Address

« LS =E»

file:///C:/Users/User/Downloads/Memo_COA.html

32/112

1/29/23, 5:22 PM Memo_COA

Instruction Format

0 bits 5 bits 5 hits 5 ats 5 bits 6O bats
R: op rs rt rd shamt funct
I: op rs rt address / immediate
J: op target address

op: basic operation of the instruction (opcode)

rs: first source operand register

rt;. second source operand register

rd: destination operand register

shamt: shift amount

funct: selects the specific variant of the opcode (function code)
address: offset for load/store instructions (+/-2'%)

immediate: constants for immediate instructions

Instruction Formats

% All instructions are 32-bit wide. Three instruction formats:
* Register (R-Type)

< Register-to-register instructions

< Op: operation code specifies the format of the instruction

Op® Rs® Rt5 Rd® sa’ funct®

* Immediate (I-Type)

< 16-bit immediate constant is part in the instruction
Op® Rs® Rt® immediate!®
s Jump (J-Type)

<~ Used by jump instructions

Op® immediate2®

Instruction Set Architecture ICS 233 — Computer Architeciure and Assembly Languuge — KFUPM @ Muhamed Mudawar slide 9

Addressing Model

file:///C:/Users/User/Downloads/Memo_COA.html 33/112

1/29/23, 5:22 PM Memo_COA

Example: MIPS Instruction Formats and Addressing Modes

+ All instructions 32 bits wide

Register (direct) |op l f‘5| rt I f‘dl |

Immediate
Base+index -
|op I rsl rTl immed | NEmary
l register < :
PC-relative 2
|op I rsl rTl immed | Werors
ECE 361 345
5.6 Addressing Modes
Addressing Instruction Other elements involved Operand
implied . Someplace @——————f]
in the machine
mmediate [[o= E—
I = e e E—

Constant offset Mem
Base ¥ - Reg \A addr = Mem
Regbase | Reg file data Memory [Gaia
PC-relative ...= Constant offset Mgg]
A a Mem
Memory
cata

Pseudodirect [_] [| [pc | Mem '—E’l—l
m
1 T addr Memory | Gata

Figure 5.11 Schematic representation of addressing modes in MiniMIPS.

Computer Architecture, Instruction-Set Architecture Slide 22

Instruction Categories

file:///C:/Users/User/Downloads/Memo_COA.html 34/112

1/29/23, 5:22 PM

Memo_COA

MIP S . IS A Category | Instruction Example Meaning
.
Arithmetic Add add $s1, $s2, $s3 $s1 = $52 + $s3
(R&! ubtract 0 and 34 sub ST, 982, S, bs1 = pss - 3S.
format) add immediate | 8 addi $s1, $s2, 6 $s1=4s2+6
or immediate 13 ofi $s1,8s2,6 $s1=%s2v6
Logical (R& | And 0and36 | and $si, $s2, $s3 $s1 = $s2 & $s3
Ltormer) Or 0and37 | or $s1, 3s2, $s3 $s1 =952 | §s3
Nor 0and39 | nor $si, $s2, $s3 $s1 = ~($s2 | $s3)
And immediate 12 andi $s1, $s2, 100 $s1=%s2 & 100
Or immediate 13 ori $s1, $s2, 100 $s1=$s2|100
Shift left logical 0and0 sl $s1, $s2, 10 $s1 =952 << 10
Shift right logical | 0and 2 sl $s1, $s2, 10 $s1 =$s2 >> 10
Data load word 35 w $s1, 24($s2) $s1 = Memory[$s2+24]
'(I'Ir'aor;i:::) store word 43 sw s, 24($s2) Memory[$s2+24] = $s1
load byte 32 b $s1, 25($s2) $s1 = Memory[$s2+25]
store byte 40 sb $s1, 25(%$s2) Memory[$s2+25] = $s1
load upper imm 15 i $s1,6 $s1=6"26
Cond. br on equal 4 beq $s1, $s2,L if ($s1==%s2) goto L
ﬁrgn,;'; d bronnotequal | 5 bne $s1, §s2, L if ($s1 1=$s2) goto L
format) set on less than Oand42 | sit $s1, $s2, 353 if ($52<$s3) $s1=1 else $s1=0
set on less than 10 siti $s1, $s2, 6 if ($s2<B) $s1=1 else $s1=0
immediate
Uncond. jump 2 j 2500 go to 10000
.(lJur;% jump register 0and8 jr st go to $t1 g
format) jump and link 3 jal 2500 9o to 10000; $ra=PC+4

MIPS ISA as an Example

« Instruction categories:

“ Load/Store
¢ Computational

« Jump and Branch

¢ Floating Point

© Memory Management

Registers

$r0 - $r31

l PC |

« Special T
l LO |
3 Instruction Formats: all 32 bits wide
[opr | srs | st | $rd | sa | funct |
[op | srs | st | immediate |
[op | jump target |

ISA - Performance

file:///C:/Users/User/Downloads/Memo_COA.html

35/112

1/29/23, 5:22 PM Memo_COA

Compiler Variations, MIPS, Performance:
An Example (Continued)

MIPS= Clock rate / (CPIx 105 = 100 MHz / (CPI x 105)
CPI = CPU execution cycles / Instructions count

CPU clock cycles = i (CPL % C,)

i=1

CPU time = Instruction count x CPI / Clock rate

* For compiler 1:
— CPL=(5x1+1x2+1x3)/(5+1+1)=10/7=1.43
— MIP, =100/ (1.428 x 105 = 70.0
— CPUtime, = ((5+1+1) x 105x 1.43) / (100x 10%) = 0.10 seconds

* For compiler 2:
~ CPL=(10x1+1x2+1x3)/A0+1+1)=15/12=1.25
- MIP,=100/(1.25x105) =80.0
— CPU time, = ((10+1+1)x10°x 1.25) / (100 x 10%) = 0.15 seconds

| EECCS51 - Shaaban |-

#47 Lec#1 Winter 2000 121200

Speed Up Equation for Pipelining

CPT = Ideal CPI + Average Stall cycles per Inst

pipelined

Ideal CPI x Pipeline depth _ Cycle Time, icined

dup =
SPeedUP = Tdeal CPT + Pipeline stall CPT * Cycle Time

pipelined
For simple RISC pipeline, CPI = 1:

Pipeline dep‘l‘h % CYCIE Timgmpipeaned

i =
SpeeduP = 1 Pipeline stall CPL < Cycle Time

pipelined

Cs211 41

Processor - Von Neumann Architecture

file:///C:/Users/User/Downloads/Memo_COA.html 36/112

1/29/23, 5:22 PM

Input
Device

Memo_COA

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Output
Device

Memory Unit

von Neumann Architecture

* A more complete view of the computer system architecture
that integrates interaction (human or otherwise) consists of:

Computer System

i Computer
i Input
i Data . Devic
E) : Main) e
] CPU Bus Memory | |Bus -
i Contr ~ ut
i ol = Devic
Five Main Components: e
1. CPU v Bus
2. Main Memory (RAM) Seconda
3. Input/Oouput Devices Storage
4. Mass Storage Device
5. Interconnection network
== s ———————————————

Von Neumann Architecture Diagram

Central Processing Unit

-

~

Control Unit

Arithmetic Logic Unit

Registers

| MAR | [MDR || PC || Acc |

Program

file:///C:/Users/User/Downloads/Memo_COA.html

37/112

1/29/23, 5:22 PM

Memo_COA

Computer Systems - Von Neumann Architecture

CPU

ALU

Control and

CU [pecoder]

L1 Cache

¢

mm

L2 Cache -

0358

Processor

- Pipeline

Pipelining

-M

2 Pipelining doesn't help latency (execution time)
of single task, it helps throughput of entire
workload

“ Multiple tasks operating simultaneously using
different resources

O @ & ntia ispeedup = Number of pipe stages
2 Time to “fill” pipeline and time to “drain” it
reduces speedup

Timing

Address

Data

RAM

Secondary
Storage
e.g. HDD

© Pipeline rate limited by slowest pipeline stage

“ Unbalanced lengths of pipe stages also reduces
speedup

file:///C:/Users/User/Downloads/Memo_COA.html

1/29/23, 5:22 PM

Memo_COA

The Fetch-Execute Cycle

Control

(2) Decode instruction
Registers
FETCH CYCLE

(3) Get data

EXECUTION CYCLE

(4) Execute the instruction ,

ALU

t (1) Fetch Instruction
\

Main Memory

Figure 5.3 The Fetch-Execute Cycle

17
@ 2011 Jones and Bartlert Publishers, LLC (www.jbpub.com)
Address
Instruction
Value Value
¥ ¥
o
Yy y
(Execution Unit) Instruction Instruction
Registers Register Counter
' Address (Jumg)
! Decoder | Status
\ ‘._ F,." 7 ¥ Register
— / Signal (Flags)
AL Generator
— max Reply
\\\ address l
Memory Execution Unit Contol Unit I/0
Job Unit

AQA Computing

Program
Counter

Memory Address Bus
Register

Memory Buffer
Register

Current
Instruction
Register (CIR)

Fetch
MAR « [PC]
PC « [PC]+1
MBR <« memory contents
CIR « [MBR]

m,

Screencast-O-Matic.

file:///C:/Users/User/Downloads/Memo_COA.html

Data Bus

Op-code Operand

Accumulator

R Main Memory

The Fetch-Execute cycle

39/112

1/29/23, 5:22 PM

Memo_COA

Address

L_PC

MAR

g

Instruction Decoder ID

Opcode

Operand || Operand

Aty

Result
| \

Memory

Data

nstruction Frch | "Uon Decde | bxectte | Memory Access | Wit Back
IF ID EX MEM WB
— — __ Next PC —
Next SEQ PC Next SEQ PC |
=
RS1 S
Branch
Ase Register taken
File
] =
= S R o
(S} m [= ~
| = E g 3
-

Data operations in detail

WB Data

. Program Counter holds the

instruction address.

. Instructions are fetched from

memory into the Instruction
Register.

. Control logic decodes the

instruction and tells the ALU
and Register File what to do.

. ALU executes the instruction

and results flow back to the
Register File.

. The Control logic updates the

Program Counter for the next
instruction.

/=

file:///C:/Users/User/Downloads/Memo_COA.html

Register File Program Counter

Instruction address

Instruction Register

Current instruction

Control

ALU = Arithmetic Logic Unit (Compute)

40/112

1/29/23, 5:22 PM

Memo_COA

32
2. Data Transfers

Data transfers in detail

1. ALU generates address

2. Address goes to the
Memory Address Register

3. Results to/from memory
are stored in the Memory
Data Register

4. Data from memory can
now be stored back into
the Register File or to
memory can be written.

Register File

Memorv Address

[Daf 24 Jress |

Data Register
323

e« I/=E»

46

2 €~quencing
The label constant is in instruction words, so it needs

Sequencing in detail

to be multiplied by 4 to convert to byte address.

1. ALU compares registers

2. Result tells the Control
whether to branch

3. If the branch is taken, then
the Control adds a constant
from the instruction to the
Program Counter

4. The Control always adds 4 to
the Program Counter

Register File Progran. .nter

Next if RO==R1

Instruction R

[bneRO,RLG) |

Control

I’Not ZERO

]
I

Processer - Datapath

Review: MIPS data transfer instructions

= For all cases, calculate effective address first
2 MIPS doesn’t use segmented memory model like x86
o Flat memory model = EA = address being accessed
= b, Ih, lw
2 Get data from addressed memory location
o Sign extend if Ib or Ih, load into rt
= |bu, lhu, Iwu
o Get data from addressed memory location
u Zero extend if Ib or Ih, load into rt
= sb, sh, sw
o Store data from rt (partial if sb or sh) into addressed location

10/30/2014 Computer Architecture Lecture 2 5

file:///C:/Users/User/Downloads/Memo_COA.html

41112

1/29/23, 5:22 PM

MIPS Data Transfer Instructions

Memo_COA

Instruction Comment
SW R3, 500(R4) Store word
SH R3, 502(R2) Store half
SB R2, 41(R3) Store byte
LW R1, 30(R2) Load word

LH R1, 40(R3)

LHU R1, 40(R3)
LB R1, 40(R3)

LBU R1, 40(R3)
LUI R1, 40

Why do we need LUI?

Load half word

Load half word unsigned
Load byte

Load byte unsigned

Load Upper Immediate (16 bits shifted left by 16)

0000 ... 0000

Single-Cycle Datapath
* Execution Datapath
¢ Branch Instruction

Compare the two registers

Compute the branch address

Change PC if true !

o

Branch
Address

Instruction

Branch
Address
[——
i e
1
i i
i I
] 1
------------ 1 ALU
) - - =3 Control
RegWrite H
‘ P
Read Addr1 Wrife o 4
AT E Datal : 5
Read Addr 2
! s | R
|| Write Add g S i
i EEaseh Data 2
i =
: Write Data o
1 i
! i
H Sign !
_____ - | —
Ext. x4

file:///C:/Users/User/Downloads/Memo_COA.html

42/112

1/29/23, 5:22 PM

Memo_COA

Single-Cycle Datapath

Instr[25-0] /Shift I
left2/ | pci31-28)
+
4 Jump
/\ Branch
ALUOp \ MemRead
Control |
Instr[31-26] Unit] MemtoReg
/ MemWrite
s ros ALUSre
! RegDst RegWrite
E ovf
|| Instr[25:21] = d:j T e, -
: i Read Addr1
hl‘\iterucotmn Instr[20416] Register, Read —Address
m B s it
& — Read Addr 2Data 1 zerc Data
Read I ?' +
P Cde Instr[31-0] = File L Memory Read Data 1
Address Whrite Addr e X ALU Ty =" |
Data 2 Write Data —{()
— Write Data /
| |Instr[15
-11] *Ti
Instr[15-0] / g;
s G ALU
16 (R 3o contro!
@ Instr[5-0]

Pipeline Hazard

Pipeline Hazards (1)

* Pipeline Hazards are situations that prevent the next
instruction in the instruction stream from executing in its
designated clock cycle

» Hazards reduce the performance from the ideal speedup
gained by pipelining
» Three types of hazards

— Structural hazards

« Arise from resource conflicts when the hardware can’t support all possible
combinations of overlapping instructions

— Data hazards
» Arise when an instruction depends on the results of a previous instruction in
a way that is exposed by overlapping of instruction in pipeline
— Control hazards

* Arise from the pipelining of branches and other instructions that change the
PC (Program Counter)

file:///C:/Users/User/Downloads/Memo_COA.html

43/112

1/29/23, 5:22 PM Memo_COA

Pipeline Hazards (2)

* Hazards in pipeline can make the pipeline to stall

» Eliminating a hazard often requires that some
instructions in the pipeline to be allowed to proceed
while others are delayed

— When an instruction is stalled, instructions 1ssued latter
than the stalled instruction are stopped, while the ones
1ssued earlier must continue

* No new instructions are fetched during the stall

Solution for Pipeline Hazards

Structure Hazards

Lmen Er==co—

Conflict for use of a resource

Suppose that we has only a single memory instead of

two memories (instruction and data) In the MIPS design
= Load/store requires data access

* Instruction fetch would Rave to stall for that cycle
Would cause a pipeling "bubble”

Hence, pipelined datapaths require separate
instruction/data memorigs

Progm

RO 200 400 60O | BOD [G000 1200 1400
{in s tnuctong) iy

; i
w51, |nmso;|i“*,;"‘| |n-: FTITI W 1}!.;!
n 52, 200050 Z00ps || || Mo .02 !“"I
b 53, 200050} 200 g | |ﬂoﬁ au | |uh,|

mops 200 u. Poes 20008
e !
U ke e ST
|] [!Wps 00ps 2Mps 200ps 2oops FrOCOSSOr — 59

file:///C:/Users/User/Downloads/Memo_COA.html

44/112

1/29/23, 5:22 PM Memo_COA

Structural Hazards (3)

Time (in clock cycles)

cc1 ccz | ccs | cc4] i ccse i ccr i ccs

Load

Instruction 1 Mem _J: Reg Reg
Instruction 2 Mem I Mem T‘Iig

Stall Bubble Bubble Bubble Bubble

Re
] l>|
Instruction 3 Mem _J: Reg ,; Mam T

« Stall cycle added (commonly called pipeline bubble)

~

Structural Hazard

4+ Different instructions using the same resource at the same time
¢ Register File:

+ Accessed in 2 stages: L I-ﬁa.l.’ I -l
* Read during stage 2 (ID) N
* Write during stage 5 (WB) Bﬂ_ﬂ%@
+ Solution: 2 read ports, 1 write port [] I-@- #} ﬂrl
+ Memory -l .,’ |Iﬂrl

“ Accessed in 2 stages: =
= |nstruction Fetch during stage 1 (IF) Eﬂ_
* Data read/write during stage 4 (MEM)

+ Solution: separate instruction cache and data cache

4 Each functional unit can only be used once per instruction

4 Each functional unit must be used at the same stage for all
instructions

cture 2015 - Pipeline

Consider the following set of instructionsin a 5-stage pipeline.

Operands are read in 1D,

MEM is memory Write for result; RW is Register Write for result
R3is ADD R3, R6, RS - Results to be written in R
accessed in
READ mode; SUB R4, R3, RS - R3 has one of the operand

But result of
ADD written
in R3 at t5

expect the ORR6, R3, R7 - R3 has one of the operand
result of

ADD to be ANDR8, R3, R7 - R3 has one of the operand

a"a":g'e i XORR12, R3, R10 -R3 has one of the operand

] 2 | B t4 | 5|6 | t7r | B8] ©
'ADD R3, R6, RS IF D IE MEM | RWR3 | -- - - - ote
&= IF | DRz 1 IE /ﬂ B - = i i
- = IF DRs” ’(E EM | RW | - | -- essing R
_ _ 2 = = IF iDra \g MEM | RW | --
XORRIO,R3,R11 | — | —— | — = [o [€ [mem | rw

file:///C:/Users/User/Downloads/Memo_COA.html 45/112

1/29/23, 5:22 PM Memo_COA

Data Hazard Solution:

* “Forward” result from one stage to another

Time (clock cycles)
I

; |add r1,r2,r3 [fn |
n
g sub r4,r1,r3
’ _ Reg
and r6,r1,r7 H Ree|:
0]
r D R
4 lor r8,r1,r9 g
e =N Ip
cxorr10 1 [Rl P ke
* “or” OK if define read/write properly
cs 152 L13.13 DAP Fa97, © UCB
Data Hazard Solution: Forwarding
* Key idea: connect data internally before it's stored
rlmalli‘:n(‘.c':m'tqc(l‘.eé"! oca cc4 [¥] CC6 ocT cc 8 cca
Walue of register 2 . 10 10 10 10 10/ =20 —-20 -20 —-20 —20
Value of EX/MEM @ X X X —20 X X X X X
Vale of MEMAWE : X X k4 x —20 X » % ks
Program

Exacition arder

{in instructions) M
aub 52, §1,83 m '@-I ’ *

or §13, $6, 52 El_

!

—{Red

-
s
["H

Ao
e

AR

add §14, 52,
aw §185, 100152 , Iml w
Assumption: . B
* The register file forwards values that are read
CSCEINE and written during the same cycle. Pipeline Harards

file:///C:/Users/User/Downloads/Memo_COA.html

46/112

1/29/23, 5:22 PM Memo_COA

" Control Hazard

* Also known as branch hazard

* Pipeline makes wrong decision on branch prediction

* Brings instructions into pipeline that must
subsequently be discarded

* Dealing with Branches
— Multiple Streams

Prefetch Branch Target

— Loop buffer

Branch prediction

Delayed branching

Control Hazard on Branches

PC

sea | i [FDH e
w [eja el

The 3 instructions

Get o e pe even | 2 [etee]s

if the branch is taken pc

sub HEH |- P et e

PC

Inst from target] I'Eﬁ'l-’ IEEI i

28 Computer Structure 2015 - Pipeline

file:///C:/Users/User/Downloads/Memo_COA.html 47/112

1/29/23, 5:22 PM Memo_COA

Summary - Control Hazard Solutions

* Stall - stop fetching instr. until result is
available
— Significant performance penalty
— Hardware required to stall

* Predict - assume an outcome and continue
fetching (undo if prediction is wrong)
— Performance penalty only when guess wrong
— Hardware required to “squash" instructions

* Delayed branch - specify in architecture that
following instruction is always executed
— Compiler re-orders instructions into delay slot
— Insert "NOP" (no-op) operations when can't use (~50%)
— This is how original MIPS worked

CSCEI30/830 Pipelime Hazards

Control Hazard Review

The nub of the problem:

+ In what pipeline stage does the processor fetch the next
instruction?

+ If that instruction is a conditional branch, when does the processor
know whether the conditional branch is taken (execute code at the
target address) or not taken (execute the sequential code)?

+ What is the difference in cycles between them?
The cost of stalling until you know whether to branch

« number of cycles in between * branch frequency = the contribution
to CPI due to branches

Predict the branch outcome to avoid stalling

Spring 2003 CSE P548 1

file:///C:/Users/User/Downloads/Memo_COA.html 48/112

1/29/23, 5:22 PM Memo_COA

Frogram
aracition : 2 kS B) 10 1% 14
ordar Tima T T T T T T T »
(in instractona)

mdd 1,45, 45 [0S Ry sru | De g,

bag $1, $2, 40 - B 1 aLy | Do g,

na
Lrnatr netiog Data

Ier $3, A0OCED) T fatan | BEE AL | s | BEE
Frogram
axacation _ 2 i B) 10 12 14
order Tima T T T T T T t -
fin instrackiona)

Inatr netiog, Data
add $4 4 46 fateh | BEE ALTT | e | FEE
Inatr netiog Da;
bag $1, $2, 40 - e Y Feg ALU | Ry
™
bubble " tubhble bubkhb bubh bubhl
Inatroctiog Data

L or $7, 38, 45 im feteh Eeg AT Aoceas Reg

Mermory Hierarchy

The Memory Hierarchy

CPU

Registers

Direct

Aeces 0P

Storage
Main Memory RAM Areas

Physical RAM Virtual Memory
Indirect Access to CPU

Permanent
Operating System Network/ Storage
Assisted Memory : 5 Internet Areas
Management Storage

Scanners/
Keyboard Camera/ Remote

Other
Mic/ Source Source
video

http://csel.net/recaps/4-memory.html

file:///C:/Users/User/Downloads/Memo_COA.html 49/112

1/29/23, 5:22 PM

A Typical Memory Hierarchy

Memo_COA

0 By taking advantage of the principle of locality

e Can present the user with as much memory as is available in the
cheapest technology

e at the speed offered by the fastest technology

On-Chip Components

| Control | -

Second i Secondary
Level 2 : I\J:Sr.ni;y
Cache B 18
(SRAM) (DRAM)

Speed (%cycles): '%2's 1’s 10's 100’s 1,000’s

Size (bytes): 100's K's 10K’s M'’s GstoT's

Cost: highest lowest

CEG3420 L13.9

Qiang Xu CUHK, Spring 2011

Many Levels in Memory
Hierarchy

Invisible only to high-level
language programmers

Pipeline
regis
___fers |

rRegister file—l

Usually made

1st-level cache
(on-chip)

There can also be
a 3" (or more)

invisible to

2nd-level cache

the programmer

(even assembly (usu. mounted on same board as

Py

C 1?eflevels here
(on.same MCM as CPU)
Ty

programmers)

3z PIFAL) BAY
vIIttal Hciory

(on hard disk, often in same enclosure as

Falsile

Disk files

(on hard disk often in same enclosure as CPU)

Network-accessible disk files
(often in the same building as the CPU)

Tape backup/archive system
(often in the same building as the CPU)

Our focus
in this lecture

Data warehouse: Robotically-accessed room full of shelves of tapes
(usually on the same planet as the CPU)

file:///C:/Users/User/Downloads/Memo_COA.html

50/112

1/29/23, 5:22 PM Memo_COA

Characteristics of the Memory Hierarchy

Processor
Inclusive—
14-8 bytes (word) what is in L1$
is a subset of
Increasing '-]5 what is in L2$
distance +8-32 hytes (block) is a subset of
from the L2$ what is in MM
rocessor t i
P 770 4 block thatis a

in access Fath
Main Memory subset of is in

time 4 SM
11,024+ bytes (disksector 4 page)
Secondary Memory
(Relative) size of the memory at each level
CPEA432 Chapter 5A.7 Dr. W. Abu-Sufah, UJ

Block Size / Hit Rate / Miss Rate

MIPS Direct Mapped Cache Example
0 One word/block, cache size = 1K words

Byte
C'I:H3D 1312;1 210 Of'fSet
Hit Tag ~|20 T™~O0 Data
Index 1

Index Valid Tag Data

0

1

2

T ¥
1021
1022
1023

=20 —3.32
o —

What kind of locality are we taking advantage of?

CEG3420 L13.34 Qiang Xu CUHK, Spring 2011

file:///C:/Users/User/Downloads/Memo_COA.html 51/112

1/29/23, 5:22 PM Memo_COA

MIPS Cache Look Up

L L] . 0
| |
| Index into cache | Index to byte in Virtual
!wm Page Number sy R Proga
— =
Virtual Index | 11]
B i
TLB - Translate [byte | |
Virtual to
Physical
Cﬂl‘:llh-

Aitibind BT BBt TitFaaigriet LIPS, bkl i) Do ki

A 4-Way Set-Associative Cache

g
#,:
2. N N S I 2. LLS T
o — \
J) s} .r
T % = T

+ Increasing associativity shrinks index, expﬁnds tag

[TRe— T Corrpaes Syt ischyn

file:///C:/Users/User/Downloads/Memo_COA.html 52/112

1/29/23, 5:22 PM Memo_COA

Miss Rate vs. Block Size

| Cache size _ _:
II Block size 1K 4K 16K 64K 256K ':
E| 16 15.05% 8.57T% B 3.94% - 1.04'31 1.09%_1
32 3% 124% 287% 135% 070% |
T w 1376% 7.00% 2.64% 106% 051% |
o leed% 178% 271% L% 049% |
s 2201% 951% 329% LISk 049%

L= — e s ot 1O

: - in
FIGURE 5.12 Actual miss rate uamusl :::k\m :n?zm; sized n::ad;?igh-
Figure 5.11. Mote that for a 1-KB cache, ' : locks ;
ar?-nl:ss rate than 32-byte blocks. In this axample, the cache would have to be 256 KB in order
for a 256-byte block to decrease misses.

21598 CE520559 Mamory C. Edward Chow Page 34

Block Size Tradeoffs

* Larger block sizes...
= Take advantage of spatial locality

= Incur larger miss penalty since it takes longer to transfer the
bleck into the cache

— Can increase the average hit time and miss rate

* Average Access Time (AMAT) = HitTime + MissPenalty*MR

Miss Penaley Miss Ratio AMAT

Exploirs spatial bocadity Increased miss penalty

and miss rate

Fewer blocks,
COMpromises
localicy

Block Size Block Size " Block Size

+ # of cache misses)

OR

it ratio =1 - Miss ratio

file:///C:/Users/User/Downloads/Memo_COA.html 53/112

1/29/23, 5:22 PM Memo_COA

Avg mem access ime = Hif time ;| + Miss rate | * Miss penalty |
Muss penalty | = Hat time ; , + Miss rate ; , % Mass penalty

Handle Cache Miss

o Search in cache

If cache hit,
return data

Database Application

€ If not found (cache miss),
search in database

.‘_,,,.-..,‘ Da,ta fnund I_n :ache — R“d Hit“..u.........“....q._‘

E @ Physical Disks |

Host

i Read :

| Request Cache

: Send Data = E
(a)

LRI L L O L LA L Data not fﬂu“d ."1 cache = Read Hiss bbb b LU b P

€Y @ Physical Disks

Host
: Read Caci Read

: uest Request y
E | m - qM . E

Send Data Read from 2
the Disk i

@ ©

R e e R e T]

file:///C:/Users/User/Downloads/Memo_COA.html 54/112

1/29/23, 5:22 PM

Memo_COA

Types of Cache Misses: The Three C’s

I Compulsory: On the first access to a block; the block
must be brought into the cache; also called cold start
misses, or first reference misses.

2 Capacity: Occur because blocks are being discarded
from cache because cache cannot contain all blocks
needed for program execution (program working set is
much larger than cache capacity).

3 Conflict: In the case of set associative or direct
mapped block placement strategies, conflict misses occur
when several blocks are mapped to the same set or block
frame; also called collision misses or interference misses.

| EECCS551 - Shaaban '[~

¥l Law BE W jnder 200 |- M- 2002

Hasrea Duplicats

Drs Dupiicals Reiston Cache

Detect
remncone [ik | 90 by | conent M@?\’wimnim
Block)‘
Compem Unt [@ oty DR
. |)
@y R [———
ACCEss. ':Iﬂ g | corert g | e | fng | e
» acy | M
L
- .
<.
- -
. .
) = =
. T 5
. o | Aoscam
LECEN =T
atry in DR wisn
Ao s e,
W — @ oo
e e T

LT Hit L

Hashed Duplicate
Detection Table

hash-code | mask | PC

Instruction Cache DR Table Duplicate Relation Table

Access| missed duplicate
tag content @ PC mask PC
Block
s Compare Unit

Access

. [
o B
| B
. . -
1$
Access
index N
{ tag l AT I
1$ econdary
Miss Hit
P DR index
]—’IDR tag

Cache Performance

file:///C:/Users/User/Downloads/Memo_COA.html

55/112

1/29/23, 5:22 PM Memo_COA

Cache Performance Equations

+ Memory stalls per program (blocking cache):

M. A
MemoryStallCycle = 1C x(emory. CF‘ESS@S) x MissRate x MissPenalty
Instruction
Misses :
MemoryStallCycle = IC x (————) x MissPenalty

. Instruction
« CPU time formula:

Memory Stall Cycle

CPU Time = IC x(CPI -
Instruction

) x Cycle Time

Execu +

« More cache performance will be given later!

46

Cache Performance

+ CPI CPI

contributed by cache — c
= miss rate * number of cycles to handle the miss
* Another important metric
Average memory access time = cache hit time * hit rate

+ Miss penalty * (1 - hit rate)

Caches CSE 471

file:///C:/Users/User/Downloads/Memo_COA.html 56/112

1/29/23, 5:22 PM

Memo_COA

2-level Cache Performance Equations

L1 AMAT = HitTimeL1l + MissRateL1l * MissPenaltyL1

- MissLatencyL1 is low, so optimize HitTimelL1

» MissPenaltyLl = HitTimelL2 + MissRatelL2 * MissPenaltylL2

- MissLatencyL2 is high, so optimize MissRatelL2
- MissPenaltyL2 = DRAMaccessTime + (BlockSize/Bandwidth)

- If DRAM time high or bandwidth high, use larger block size

* L2 miss rate:

- Global: L2 misses / total CPU references
- Local: L2 misses / CPU references that miss in L1

- The equation above assumes local miss rate

HitTimelL1 HitTimelL2 DRAM
BlockSize/Bandwidth
CPU [€——>|L1-Cache|€——> L2-Cache |€ »| DRASlesEese e
Bandwidth - how block in DRAM
many bytes can be

transacted from DRAM
per cycle

Improving Cache Performance

» Miss Rate Reduction Techniques:

* Increased cache capacity
* Higher associativity
Hardware prefetching of instructions and data

Compiler-controlled prefetching

» Cache Miss Penalty Reduction Techniques:
* Sub-block placement
* Non-blocking caches

Larger block size

* Victim caches

* Pseudo-associative Caches
Compiler optimizations

* Giving priority to read misses over writes
“ Early restart and critical word first
Second-level cache (L,)

» Cache Hit Time Reduction Techniques:

Small and simple caches
Avoiding address translation during cache indexing

“ Pipelining writes for fast write hits

| EECC551 - Shaaban

#7 Lec#10 Winter2000 1-23-2000

file:///C:/Users/User/Downloads/Memo_COA.html

57/112

1/29/23, 5:22 PM

Memo_COA

Qualitative Cache Performance Model

Miss Types
+ Compulsory ("Cold Start") Misses
- First access to line not in cache
* Capacity Misses
- Active portion of memory exceeds cache size
+ Conflict Misses

- Active portion of address space fits in cache, but too many lines
map to same cache entry

- Direct mapped and set associative placement only
- Coherence Misses
- Block invalidated by multiprocessor cache coherence mechanism
Hit Types
*+ Temporal locality hit
- Accessing same word that previously accessed
* Spatial locality hit
- Accessing word spatially near previously accessed word

-42- €S 740 FO7

Address Translation Mechanism

Paging

Main Memory

The operating
systemuses | 2- | Pagem Pagen | 2
page tablesto | § § 568
map the pages | & & -2
in the linear | 2% N
virtual address | 2 g Pagel |2 g
g g s
space onto £g Page0 |c &

main memory

: sl Disk /' The operating
Each running Pages that cannot system swaps
program has fit in main memory pages between
its own page are stored on the memory and the
table hard disk hard disk

As a program is running, the processor translates the linear virtual addresses
onto real memory (called also physical) addresses

file:///C:/Users/User/Downloads/Memo_COA.html

58/112

1/29/23, 5:22 PM

Memo_COA

[!

Page No. Offset Frame No. Offset =

CPU

Y

A
Logical Address Physical Address

P3

A A

TLB Hit
P1 f S P1

A A

A A

P2

TLB Miss

A A

LB PO

Main Memory

PO

PTER

P2

P3

Page Table

Translating Logical Address into Physical Address

Address Translation Mechanism

virtual page #
B9 pifest Address from CPU

| (virtual address)

< Main memory
physical page # offset Page (4KE)
| | | physical address

base address of
physical page

physical page #

% o
.‘//

Page table register

0S programs

v
1
!
1
i -—
this register 0 — - |
1
0
1
1]

(for example,
CR3 in x86)

«
P
pe————

Page Table
(in main memory)

Disk storage

H Korea Univ

Address Translation with Cache

file:///C:/Users/User/Downloads/Memo_COA.html

59/112

1/29/23, 5:22 PM Memo_COA

Virtual Address Translation

* The hardware converts each valid virtual
address to a physical address

virtual address

Page
Directory
\ Address translation (hardware)
Page I
Tables if page page fault
not valid... (exception,
handled by
Translation software)
Lookaside
Buffer
: Physical page number _

physical address

a cache of recently-
used page table entries

Address Translation Overview

MMU E
CPU —. TLB physicel cache
address dddress
context table pointer

context

Page tables
‘=

Fred Kuhns (3/11/2014) C€5523 - Operating Systems 29

file:///C:/Users/User/Downloads/Memo_COA.html 60/112

1/29/23, 5:22 PM Memo_COA

{HMC. CS:L

Address Translation With a TLB o .

n-1 p_p-1 0
virtual gaT number | page offset] virtual address
valid__ta hysical page number
g _phy:! pag > TLB
v
TLB hit‘—Gg
[physical address |)
tag index l byte offset
valid tag data
> Cache

cache hit ‘—G_J) * data /

S CS 105

Physical or Virtual Address
Caches?

PA
CPU VA TLB Physical Primary
Cache Memory

Alternative: place the cache before the TLB

VA
- Primary
Virtual | PA (StrongARM)

one-step process in case of a hit (+)

@ cache needs to be flushed on a context switch unless
address space identifiers (ASIDs) included in tags (-)

aliasing problems due to the sharing of pages (-)

November 13, 2013 http://csg.csail.mit.edu/6.5195 L20-22

file:///C:/Users/User/Downloads/Memo_COA.html

61/112

1/29/23, 5:22 PM Memo_COA

Review: Virtual Addressing

virtual physical
User processes Iemory MEmoxy The kernel controls
address memory (big) (small) the virtual-physical
through virtual translations in effect
addresses.

for each space.

The kernel and the
machine collude to
translate virtual
addresses to
physical addresses.

The machine does not
allow a user process
to access memory
unless the kernel
“says it’s OK”.

translations

The specific mechanisms for memory
management and address translation are
machine-dependent.

Systemns & Architecture

Background

m Main memory and registers are the only storage
CPU can access directly

m Collection of processes are waiting on disk to be
brought into memory and be executed

m Multipl ams are brought into memory to

impro

file:///C:/Users/User/Downloads/Memo_COA.html 62/112

1/29/23, 5:22 PM Memo_COA

Source Code (.c, .cpp, .h]l

Preprocessing | Step 1: Preprocessor (cpp)

Include Header, Expand Macro (.1, .ii)l
Compilation ' Step 2: Compiler (gcc, g++)
Assembly Code [,s]l |
Assemble ' Step 3: Assembler (as)
Machine Code {o,?ﬂl |
Static Library (.1ib, .a)—» Linking Step 4: Linker (1d)
Executable Machine Code (. exe) l_ -

file:///C:/Users/User/Downloads/Memo_COA.html 63/112

1/29/23, 5:22 PM

other
object
modules

system
library

dynamicall
loaded
system
library
dynamic
linking

file:///C:/Users/User/Downloads/Memo_COA.html

Memo_COA

source
program

compiler or
assembler

object
module

linkage
editor

load
module

loader

in-memory
binary
memory
image

compile
lime

. load
time

executior
= time (run
time)

64/112

1/29/23, 5:22 PM

Memo_COA

Address Binding — Compile Time &= ¥ x4

m Program is written as symbolic code

m Compiler translates symbolic code into absolute code
m If starting location changes =» recompile

m Example: MS-DOS .COM format binary

int data; .BASE 0x1000
main() { START
data=3*7: PUSH AX ox1000| PUSH AX
print(data); MOVE AX.3 MOVE ~ AX, 3
} MULT AX, 7 MULT AX, 7
MOVE (0x1018), AX MOVE (0x1018), AX
CALL print, (0x1018) ox1010 | CALL print, (0x1018)
POP AX POP AX
END 0x1018
SPACE (4)
Source Program Disk Image Memory Content
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 6

m
Address Binding — Load Time Ll R g
m Compiler translates symbolic code into relocatable code

m Relocatable code:
» Machine language that can be run from any memory location
m If starting location changes =» reload the code

int data; START
main() { PUSH AX
data=3*7: MOVE AX,3 0x2000 | PUSH AX
pfin((dala): MULT AX,7 MOVE AX, 3
} MOVE (.BS+0x18), AX MULT AX,7
CALL print, (.BS+0x18) MOVE (0x2018), AX
POP AX 0x2010 | CALL print, (0x2018)
END POP AX
SPACE (4) 02018
Source Program Disk Image Memory Content
Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab 7

Address Binding — Execution Time &= #x%

m Compiler translates symbolic code into logical-address
(i.e. virtual-address) code

m Special hardware (i.e. MMU) is needed for this scheme

m Most general-purpose OS use this method

int data; START
main() { PUSH AX
data=3*7; MOVE AX,3 0x2000 | PUSH AX
print(data); MULT AX,7 MOVE AX, 3 Virtual addr.
} MOVE (0x18), AX MULT AX, 7
CALL print, (0x18) MOVE (0x18), AX
POP AX 0x2010 | CALL print, (0x18)
END POP AX
SPACE (4) 0x2018

Physical é;dr.

Source Program

Disk Image

Chapter8 Memory Management Operating System Concepts - NTHU LSA Lab

Storage Management

Disk Structure

file:///C:/Users/User/Downloads/Memo_COA.html

Memory Content
8

65/112

1/29/23, 5:22 PM

Memo_COA

Disk Structure

B Disk drives are addressed as

track t

— arm assembl

g}

rotation

Moving-head disk mechanism

Operating System Concepts — 7t Edition, Jan 1, 2005 12.5

DISK DRIVE STRUCTURE

o Data stored on surfaces

« Up to two surfaces per
platter

« One or more platters per disk
o Data in concentric tracks
« Tracks broken into sectors
o 256B-1KB per sector
» Cylinder: corresponding
tracks on all surfaces
o Data read and written by
heads
« Actuator moves heads
« Heads move in unison

file:///C:/Users/User/Downloads/Memo_COA.html

large 1-dimensional arrays of
logical blocks

e The logical block is the
smallest unit of transfer,
usually 512 bytes

The array of logical blocks is
mapped into the sectors of
the disk sequentially

e Sector 0 is the first sector
of the first track on the
outermost cylinder

e Mapping proceeds in
order through that track,
then the rest of the tracks
in that cylinder, and then
through the rest of the
cylinders from outermost
to innermost

Silberschatz, Galvin and Gagne ©2005

sector

platter
track
cylinder —™=

surfaces

spindle

66/112

1/29/23, 5:22 PM Memo_COA

Moving-head Disk Mechanism

track t «— spindle
3 < 4
I «— arm assembly
sector s I
|
L < 4

|

|

|

i read-write
i head
|

|

|
|
|
I
|
1
cylinder ¢ —»
|
|

platter
rotation
Operating System

Structure B

» Track » Seek Time
» Sector » Rotational Latency
» Cylinder » RPM
» Spindle » Transfer Time
» Read/ Write Head
(Arm assembly)

Redundant Array of Inexpensive Disk

R

file:///C:/Users/User/Downloads/Memo_COA.html 67/112

1/29/23, 5:22 PM

0s os
VM VM

Hypervisor

T

RAID Controller

T

RAID Controller

Memo_COA

(— Striping ﬂ (— Mirroring

os 0s
M M

Hypervisor

\

S Parity —"

os 0s
VM M

Hypervisor

T

RAID Controller

Stripe) K

| o1 | o2 | o3 |-

Rebuilding data of the failed D3 drive:
D1+D2+?=P

D3=P-D1-D2

- A

.

s RAID 0: non-redundant str

~

Figure 2

file:///C:/Users/User/Downloads/Memo_COA.html

Figure 3

CAENT 8 S 4

(

68/112

1/29/23, 5:22 PM Memo_COA

RAID 10
RAID 5
I I
RAID 1 RAID 1 RAID 5
| | [| | I I]
Al Al A2 A2 Al A2 A3 Ap
A3 A3 A4 A4 Bl B2 Bp A3
A5 A5 A6 A6 VS (o] Cp c2 c3
A7 A7 A8 A8 Dp D1 D2 D3
Disk 0 Disk1 Disk2 Disk3 Disk 0 Disk1 Disk2 Disk3

RAID 10 RAID 5

RAID 5 RAID 3

| | | | | | |
Al A2 A3 Ap Al A2 A3
B1 B2 Bp B3 v A4 A5 A6
cl Cp c2 Cc3 S =] B2 B3
Dp [5]] D2 D3 B4 B5 B6

Disk 0 Disk1 Disk2 Disk3 Disk 0 Disk1 Disk2 Disk3
. &= ¥ g

RAID 5: Distributed Parity

m Read BW increases by N times, because all four disks can serve a
read request

m Write BW
» Method1: (1)read out all unmodified (N-2) data bits. (2) re-compute parity
bit. (3) write both modified bit and parity bit to disks.
=> write BW = N/ ((N-2)+2) = 1 =» remains the same
» Method2: (1)only read the parity bit and modified bit. (2) re-compute
parity bit by the difference. (3) write both modified bit and parity bit.
=> write BW = N / (2+2) = N/4 times faster

method1 method2

Modified Parity Modified Parity
Chapter12 Mass Storage System bgoemmqbgvstem Concepts — NTHU LSA Lab 32

file:///C:/Users/User/Downloads/Memo_COA.html 69/112

1/29/23, 5:22 PM

Memo_COA

Redundant Array of Inexpensive Disks

10010011

11001101
100100171
’ A"

RAID 3: Parity Disk

logical record

1 1 1 1
Striped physical : \'/ ’ !
riped physica
—] 1 1 0 |
records
P contains sum of 0 0 0
other disks per stripe 0 0 1
mod 2 (“parity™)
R 0 1 0 1
It disk fails, subtract
P from sum of other 1 0 1 0
disks to find missing information 4 1 1
-
& =t ¥ 4

RAID 6: P+Q Dual Parity Redundancy

m Like RAID 5, but stores extra redundant
information to guard against multiple disk failure

m Use ECE code (i.e. Error Correction Code) instead
of single parity bit
m Parity bits are also striped across disks

RAID 6
R (GEte (S () (S
S || |Shaaet S| | [SEaasl
o [nesl | [Eeaes] | |WSoged] | |[SSnsw
ol ol $Eoae | |[Soeie $ SEosae
Disk O Disk 1 Disk 2 Disk 3 Disk 4
Chapter12 Mass Storage Svstem Operating System Concepts - NTHU LSA Lab 33

. &) =
Hybrid RAID
m RAID 0+1: Stripe then replicate
m RAID 1+0: Replicate then stripe
RAID 0+1 RAID 1+0
RAID 1 RAID 0
RAID O RAID O RAID 1 RAID 1

el
el
(et
(e
el
Lkt
el
(ke

Disk 0 Disk 1 Disk 2 Disk 3 Disk 0 Disk 1 Disk 2 Disk 3
*First level often control by a controller. Therefore, RAID 10 has better fault
tolerance than RAID 01 when multiple disk fails
http://www.thegeekstuff.com/2011/10/raid10-vs-raid01/

Chapter12 Mass Storage System Operating System Concepts — NTHU LSA Lab

8

- PCB(Process Control Block)

file:///C:/Users/User/Downloads/Memo_COA.html

70/112

1/29/23, 5:22 PM

Process Table

Memo_COA

PID PCB
1 L
2 -
n

Process Control Block

" | Program counter
Process Control Block S
p “ s‘. “
rogram counter
= —

Registers Address space
State Open files
Priority s
Address space Other flags
Open files
Other flags

Process Control Block

Program counter

Registers

State

Priority

Address space

B Open files

Other flags

PROCESS CONTROL BLOCK (PCB)

Facilities for process me—mj—m

Pointer | Process state

Process ID

ey Unique ID

Program counter

ey Next Program that run

Register’s

Memory Limits

Accounting

ey LOg INFO about Process

List of open file

PCB Diagram

Process Control Block (PCB)

1514 987656043210
LPLU Status (Sharahble = 1)
Brother Link 1
Running]
ProcessID —Tnused [LJPU'- Paused L
52 Input-Watt 3
R Unusad Message ID | State Ended 4
E UDB — . N Interrupted 6
It
e Buffer Pointer ™ Held 1
- . Shald 2
Father Link ™, Readv 3
¢ Blocked 4
Message Ward Complete 5
Suspend &
Process Entry Pomt ‘ son Blocked 7
“x\ LPU 1X
Son Link \ Son Process 2K
Son Complete 4%
Father Process 20X
Data Elock Link
Al Bk LN Interrupt Service 10X
Quene Link

- Scheduling

file:///C:/Users/User/Downloads/Memo_COA.html 71112

1/29/23, 5:22 PM

Memo_COA

SHORT-TERM
LONG-TERM

chedule
Dispatch

Created

Completion

Susperded

MIDDLE-TERM

MIDDLE-TERM

Suspended Resume

BLOCKED
SUSPENDED

but still in
suspended

l Job or Long Term ©
Job Pool scheduler Swapin } Swap out
or Page in Medium Term orPage out
D D D D l ‘ | Scheduler T
Y
Ready Queue Terminate
(In Memory)
{ CPU
D D D D CPU or L
Short Term
Scheduler

1/0 or Device
1/O Queue

Device i i i i

1/0 request %—

Interrupt Wait for
b
occurred interrupt
.
"

= % x Y
Schedulers GRS & 8

m Short-term scheduler (CPU scheduler)- selects which process
should be executed and allocated CPU (Ready state =» Run state)

m Long-term scheduler (job scheduler) — selects which processes
should be loaded into memory and brought into the ready queue
(New state =» Ready state)

m Medium-term scheduler — selects which processes should be
swapped in/out memory (Ready state =» Wait state)

ob Scheduling

CPU Scheduling | Operating System < Disk >
Jobl o]
job2 e
Job3 e
Job4

Memory RSN Job pool
Chapter3 Processes Concept Operating System Concepts ~ NTHU LSA Lab 18

file:///C:/Users/User/Downloads/Memo_COA.html

72/112

1/29/23, 5:22 PM Memo_COA
" SN ;
. 8= g
Long-Term Scheduler

m Control degree of multiprogramming

m Execute less frequently (e.g. invoked only when a
process leaves the system or once several minutes)

m Select a good mix of CPU-bound & 1/0-bound
processes to increase system overall performance

m UNIX/NT: no long-term scheduler
» Created process placed in memory for short-term scheduler

» Multiprogramming degree is bounded by hardware
limitation (e.g., # of terminals) or on the self-adjusting
nature of users

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 19

8 E e
Short-Term Scheduler

m Execute quite frequently (e.g. once per 100ms)
m Must be efficient:

> if 10 ms for picking a job, 100 ms for such a pick,
=>» overhead =10/ 110 = 9%

long-term short-term

Tl aveve} &Y=

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 20

* SN 3
u & = F x4
Medium-Term Scheduler

m swap out: removing processes from memory to reduce
the degree of multiprogramming

m swap in: reintroducing swap-out processes into memory

m Purpose:improve process mix ,free up memory

m Most modern OS doesn’t have medium-term scheduler
because having sufficient physical memory or using
virtual memory

swap in partially executed swap out
swapped-out processes
ready queue L { cpu [, end
VO waiting
queues |
Chapter3 Processes Concept Operating System Concepts — NTHU LSA Lab 21

file:///C:/Users/User/Downloads/Memo_COA.html

73/112

1/29/23, 5:22 PM Memo_COA
.

Process Scheduling Diagram

R

timeslice |
expired
— - D) —
wait foran |
occurs interrupt |
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 17

Differentiate between short term and long term scheduler.

{**Note: Any other relevant difference shall be considered**}

Sr. Short term scheduler Long term scheduler
No ‘/ o
A" | Itisa CPU scheduler “T It is a job scheduler

It selects processes from ready | It selects processes from job pool and loads
queue which are ready to |them into memory for execution.

execute and allocates CPU to e —— e
one of them, = —
31 Access ready queue and CPU. Access job pool and ready queue
| e S —— /

It executes frequently. 1It| It executes much less frequently. It
executes when CPU is available | executes when memory has space to
for allocation. — accommodate new process.

Speed is fast Speed is less than short term scheduler

6 | It provides lesser control over | It controls the degree of multiprogramming
degree of multiprogramming

- Context Switch

CPU Switch from Process to Process

Process 0 Process 1
executing |
N | Save state into PCB,
L]
. idle

Reload state from PCB, |

ridle Interrupt or system call executing
Save stm_
.
L]
idle

| Reload state from PCB,

executing | e

file:///C:/Users/User/Downloads/Memo_COA.html

1/29/23, 5:22 PM

Memo_COA

Context Switch

B = g

m Context Switch: Kernel saves the state of the old
process and loads the saved state for the new process

m Context-switch time is purely overhead

m Switch time (about 171000 ms) depends on
» memory speed

» number of registers

» existence of special instructions
+ asingle instruction to save/load all registers
» hardware support

+ multiple sets of registers (Sun UltraSPARC — a context
switch means changing register file pointer)

Chapter3 Processes Concept

KernelLand

UserLand

gernel mode

Context Switch

Schedule

Operating System Concepts ~ NTHU LSA Lab "

| Scheduler [Switen_tof) | |

|_Trap/Handler |

interrupt, syscall, sigral, fault, etc iret

t | Handler i) |

You are here S l

CPU Scheduling

r’“—*/A‘*—“*w

Preemptive

Non-Preemptive

7

P

Priority R;i:gﬁig Shortest| [Longest
i Job First Job First \'
Scheduling Job First f
First- Highest
= Response

Shortest Round- Come thio

Remaining Robin First- Rikesch
Job First Serve

file:///C:/Users/User/Downloads/Memo_COA.html

75/112

1/29/23, 5:22 PM Memo_COA

Highest Priority

FCFS — —=>

System Process

SJF Foreground Process

RR —,

Background Process '

e Student Process

created by Nptes Jam

Lowest Priority

CPU SCHEDULING CRITERIA

o CPU Utilization: Percent of time that the CPU is
busy executing a process.

o Throughput: Number of processes executed per
unit time.

o Turnaround Time: The interval of time between
submission of a process and its completion.

o Waiting Time: The amount of time the process
spends in the ready queue waiting for the CPU.

o Response Time: The time between submission
of requests and first response to the request.

file:///C:/Users/User/Downloads/Memo_COA.html 76/112

1/29/23, 5:22 PM Memo_COA

v
| Round Robin(RR)

\' o Each process is allotted a time slot(q). After this
' " time has elapsed, the process is pre-empted and
added to the end of the ready queue.

[
\
=l

" Performance of the round robin algorithm
> g large = FCFS

> g small 2 ¢ must be greater than the context
switch time; otherwise, the overhead is too high

Process P1 gets executed second Process P2 gets executed last
as it has the burst time of 6 which is as it has the largest burst time of 8
= larger than P4 but shorter than P2 and P3 which is larger than P4, P1 and P3
Process - e -
Time Therefore Waiting time (P1) =3 Therefore Waiting time (P2) = 16
P1 6
012 3 456 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24
L p2 8 |) I |
(—] -
m P3 7
P4 3 :
Process P4 gets executed first Proce‘ss FSigets execyted third
as it has the shortest burst time of 3 as it has the burst time of 7
which is larger than P4 and P1
Therefore Waiting time (P1) = 0 - -
Therefore Waiting time (P3) =9

ROUND ROBIN SCHEDULING

s o)
P1 642
P2 531

= gl
P4 ,5/1/ 12 14 Q15 17 19 20 23

P5 75

Given T;":‘f‘:,?s“a"t”m NOTE : Assume that all th@&
Processes arrives at t =

file:///C:/Users/User/Downloads/Memo_COA.html 77/112

1/29/23, 5:22 PM Memo_COA
CPU Scheduling (40 points)

Process | Burst Time | Priority | Arrival Time
P1 12 3 0
P2 6 4 2
P3 4 1 4
P4 18 2 6

Table 1: Process Information.

Consider the processes described in Table 1.

Questions: What is the average waiting time of those processes for each of the following
scheduling algorithms? (Draw a Gantt chart for each algorithm.)

(a) First Come First Serve (FCFS)
(b) Non-preemptive Shortest Job First (NP-SJF)
(c} Preemptive ShortestlJob First (P-SJF)
(d) Priority Scheduling
(e) Round Robin, with the following assumptions:
Assumption (1). The scheduling time quantum is 5 time units.

Assumption (2). If a new process arrives at the same time as the time slice of the
executing process expires, the OS puts the executing process in the
ready queue, followed by the new process.

Question 3: Consider the following set of processes, their arrival times, length of the CPU burst
time given in milliseconds:

Process | Arrival Time| Burst Time| Priority

P1 1 12 3
P2 2 3 1
P3 2 16 4
P4 3 10 2
P5 7 1 1

Let us schedule the execution of these processes using the following scheduling
algorithms: First Come First Served (FCFS), Shortest Job First (SJF), Round Robin (RR), and a
new type of scheduling algorithm called non-preemptive priority scheduling. The following
are the assumptions:

1) Larger priority number implies higher priority
2) Assume the guantum (aka time slice) of 2 for RR algorithm

3) Non-Preemptive means once scheduled, a process cannot be preempted (i.e. it runs
to completion).

3a [10 points] What is the response (completion) time of each process for each of the
scheduling algorithms. Write the times in the table below.

FCFS SIF Priority RR

P1
P2
P3
P4
P5

3b [10 points] Which of the above methods results in the longest average wait time. Show
calculations and explain.

file:///C:/Users/User/Downloads/Memo_COA.html 78/112

1/29/23, 5:22 PM Memo_COA

-
T
Approximate Shortest-Job-First (SJF)

m SJF difficulty: no way to know length of the
next CPU burst

m Approximate SJF: the next burst can be
predicted as an exponential average of the
measured length of previous CPU bursts

T pe1 =0 1, + (1 —a) ,~——nhistory
new one

Commonly, =at, +(1-a)at, , +(1—-0) ot +...

a=12—"

Chapter§ Process S

Priority Scheduling

m A priority number is associated with each process
m The CPU is allocated to the highest priority process
> Preemptive
> Non-preemptive
m SIF is a priority scheduling where priority is the
predicted next CPU burst time
m Problem: starvation (low priority processes never
execute)
> e.g. IBM 7094 shutdown at 1973, a 1967-process never run)
m Solution: aging (as time progresses increase the priority
of processes)

» e.g. increase priority by
Chaptor§ Process Schaduling

Evaluation Methods 8l g

m Deterministic modeling — takes a particular
predetermined workload and defines the
performance of each algorithm for that workloa«

» Cannot be generalized

m Queueing model — mathematical analysis

m Simulation — random-number generator or trace
tapes for workload generation

m Implementation — the only completely accurate
for algorithm evaluation

Chapter5 Process Scheduling Operating System Concepts - NTHU LSA Lab

file:///C:/Users/User/Downloads/Memo_COA.html 79/112

1/29/23, 5:22 PM Memo_COA

" S EAES o

Processor affinity

m Processor affinity: a process has an affinity for
the processor on which it is currently running
> A process populates its recent used data in cache
memory of its running processor
> Cache invalidation and repopulation has high cost

m Solution
> soft affinity:

+ possible to migrate
between processors
> hard affinity: . F
+ not to migrate to other | \" (=11 ’ |
processor
Chapter5 Process Scheduling Operating System Concepts — NTHU LSA Lab 40

S GRS P

NUMA and CPU Scheduling

m NUMA (non-uniform memory access):

» Occurs in systems containing combined CPU and
memory boards

» CPU scheduler and memory-placement works togethe

> A process (assigned affinity to a CPU) can be allocatec
memory on the board where that CPU resides

cPU CcPU

\ -
fast access % J fast access
A

computer

Chapter5 Process Scheduling Operating System Concepts - NTHU LSA Lab a1

* E— & =tk %

Load-balancing

m Keep the workload evenly distributed across all
processors
> Only necessary on systems where each processor has its

le processes to execute

D

own private queue of eligit

m Two strategies:

» Push migration move (push) processes from overloaded

» Pull migration

file:///C:/Users/User/Downloads/Memo_COA.html 80/112

1/29/23, 5:22 PM Memo_COA

' EAES S

Multi-core Processor Scheduling

m Multi-core Processor:
> Faster and consume less power
> memory stall: When access memory, it spends a significant
amount of time waiting for the data become available. (e.g.
cache miss)
m Multi-threaded multi-core systems:
> Two (or more) hardware threads are assigned to each core
(i.e. Intel Hyper-threading)

> Takes advantage of memory stall to make progress on
another thread while memory retrieve happens

] compute cycle I M memory stall cycle

—teet . [T TR o [NORN| o [MGE| o [N
e [c [w[e[wm[e[w]e]
s~ e TRl MR) “
" JEE—— & = ¥

Real-Time Scheduling

m Real-time does not mean speed, but keeping
deadlines
m Soft real-time requirements:

> Missing the deadline is unwanted, but is not
immediately critical

> Examples: multimedia streaming

m Hard real-time requirements:
> Missing the deadline results in a fundamental failure
> Examples: nuclear power plant controller

Chapler5 Process Scheduling Operating System Concepts - NTHU LSA Lab 45

" S
Real-Time Scheduling Algorithms

m FCFS scheduling algorithm — Non-RTS
» T1=(0, 4, 10) == (Ready, Execution, Period)
»>T12=(1,2,4)

m Rate-Monotonic (RM) algorithm

» Shorter period=> higher priority

-Deadlock

file:///C:/Users/User/Downloads/Memo_COA.html 81/112

1/29/23, 5:22 PM Memo_COA

/ Resource |1

e Deadlock in OS Process 2

\ Resource 2

Deadlock Characterization

D/

Deadlock can arise if four conditions hold simultaneously.

® Mutual exclusion: only one process at a time can use a
resource

® Hold and wait: a process holding at least one resource is
waiting to acquire additional resources held by other processes

m No preemption: a resource can be released only voluntarily by
the process holding it, after that process has completed its task

m Circular wait: there exists a set {P,, P;, ..., P,} of waiting

processes such that P, is waiting for a resource that is held by P,
P, is waiting for a resource that is held by

Ps, ..., P, is waiting for a resource that is held by P,, and P, is
waiting for a resource that is held by P,.

7.5

- Resource Allocation Graph

file:///C:/Users/User/Downloads/Memo_COA.html 82/112

1/29/23, 5:22 PM Memo_COA

Resource-Allocation Graph: Definition

A set of vertices V and a set of edges E.

o Vis partitioned into two types:
= P={P,, P, ..., P}, the set consisting of all
the processes in the system.
= R={R,, R,, ..., R}, the set consisting of all
resource types in the system.

O request edge — directed edge P, — R;
O assignment edge — directed edge R, — P;

The resource-allocation graph is therefore a
bipartite directed graph. What would be the
graph representing the bridge-crossing
example?

>

q

Operating System Concepts with Java — 7™ Edition, Nov 15, 2006 7.8 Silberschatz, Galvin and Gagne ©2007

@ ~~=T

Jenny's Lectures y 9
Somsiom e teeron o X

YehsLice f=
¢ Hre

» JENNY'S LEGTURES CS/IT NET&JRF for full

Jenny's Lectures
S S ewon ey

file:///C:/Users/User/Downloads/Memo_COA.html

83/112

1/29/23, 5:22 PM Memo_COA
Resource Allocation Graph

* Process O

+ Reasource type with 2 instances Ii'

= Pireguests instance of Rj &
+ Aninstance of Rj is allocated to Pi Ri

« Agraphwith a deadlock

air Arrir Fall 004 Leciure 4

Resource Allocation Graph (cont.)

« Agraphwith a cycle but without a deadlock:

R1

& B @
A

+ |fthere are no cycles then there is no deadlock.
+ |Ifthere isa cycle:

— If there is only one instance perresource type then there
is a deadlock.

— If there is more than one instance for some resource
type, there may or may not be a deadlock.

Yair Amir Fall 007 Lecture 4

file:///C:/Users/User/Downloads/Memo_COA.html

Rt [o | = | R3
\f/ (P3)

84/112

1/29/23, 5:22 PM Memo_COA

Resource Allocation Graph Algorithm

A
POk ¥l POE ¥l
q__ Request glecand Fn 1'._ Request
“‘ - ’ . ’
-
'mf
PoE it Fﬁgtellet?tl POk il Fﬁe‘ml'e‘ft'
Request El Reqlext a
Potertal
.qnocahed %
Pok il Begrezl
Request
Yair Amir Fall 007 Lecture 4 20

Thread hold Resource
Thread request Resource
! Thread hold or request

= Resource (either one)

(i$sue resource)

issue IssueQ/

BW ROB cilas
traceQ
LQ
Resource Allocation Graph With A
Cycle But No Deadlock
&=]

by = |If graph contains no

g cycles = no

"‘*\/P— deadlock.

2 = If graph contains a

P, cycle =
o if only one instance

R, per resource type,
N, then deadlock.
. o if several instances
\,/P per resource type,
\Q possibility of
deadlock.

file:///C:/Users/User/Downloads/Memo_COA.html 85/112

1/29/23, 5:22 PM Memo_COA

\\
\
ﬁi\ oo

[6 pts] Fill in the resource matrix according to the graph above:

4

RO R1
o o o

Allocation Need Available
RO R1 R2 R3 RO R1 R2 R3 RO R1 R2 R3
PO
P1
P2
P3

Approaches to Deadlock Prevention

—

L -Condifio-n [Approacﬁ _

- Mutual exclusion Spool everythlng |
:Hold and ;Ne;il] Request all resources |n|t|ally

- No preemption | - Take resources away
iCir-cu.Iar"vJai.t“ o j Order resources numer.ibally

Figure 6-14. Summary of approaches to deadlock prevention.

lanenbaum, Modem Opemting Systemns 3 e, {¢) 2008 Prentice-Hall, Inc. All nghts reserved. (- 13-60066 39

file:///C:/Users/User/Downloads/Memo_COA.html

86/112

1/29/23, 5:22 PM

®

L

L]

[]

[]

Memo_COA

Deadlock Avoidance

Deadlock avoidance is a technique used to avoid
deadlock.

It requires information about how different processes
would request different resources.

Safe state: if deadlock not occur then safe state.
Unsafe state: if deadlock occur then unsafe state.

The idea of avoiding a deadlock is simply not allow the
system to enter an unsafe state the may cause a

deadlock. S

3.5 Deadlock Detection

+ If a system does not employ either a deadlock-prevention or a deadlock avoidance

algorithm, then a deadlock situation may occur.
* In this environment, the system may provide:

+ An algorithm that examines the state of the system to determine whether a
deadlock has occurred.

* An algorithm to recover from the deadlock.

* Single Instance of Each Resource Type.

- Several Instances of a Resource Type.

* When should we invoke the detection algorithm?

* The answer depends on two factors:

1. How oftenis a deadlock likely to occur?

2. How many processes will be affected by deadlock when it happens?

The Difference Between Deadlock
Prevention and Deadlock Avoidance

+ Deadlock Prevention:

+ Deadlock Avoidance:

] =

Simitar to the difference betweean a traffic light
and a police oMcer directing {raffic
air Arrar Fall 00/ Leciure 4

file:///C:/Users/User/Downloads/Memo_COA.html

87/112

1/29/23, 5:22 PM Memo_COA

Comparsion Deadlock

* Dafinition ® Deadlock odcurs when none of the
processes o the set i3 able to mowve
abend due to scoupancy of the required
resources by some other process O
Deadiack s where no process proceads,
and get blocked

* Other name * Circular wating

& These fouar ponditians ariEng
conditions wmauttaneously - miutusl enclusion, hold
and wait, ne-presmpnon and ciroular wit

* Awoidancel * infinite rescurces, Wading s not

proventian allowed, Sharing is not allowed,
Techniques Freempt the resources, Al Requests
made at the startng

i Handling Deadlocks

Starvation

*® Starvation o<curs when o process waits for -
an ndefinite pericd of tme to get the =
resoures it requires Or Stanvation is wher -

lew priceity processes get blocked, and
high prianity pracess procesds

Liwed lock

Uncontrofied mansgermnent of resources, ©
Process priorties being - strictly enforces =
Use of rendom sebection, Scaxity of

resaCes

BeltwoenMates.com

&l = ¥ x4

m Ensure the system will never enter a deadlock state
» deadlock prevention: ensure that at least one of the 4

necessary conditions cannot hold

> deadlock avoidance: dynamically examines the
resource-allocation state before allocation

m Allow to enter a deadlock state and then recover

> deadlock detection
> deadlock recovery

m Ignore the problem and pretend that deadlocks

never occur in the system

> used by most operating systems, including UNIX.

-!,._.—,
Deadlock Recovery

m Process termination

is eliminated

Bankers' Algorithm

file:///C:/Users/User/Downloads/Memo_COA.html

CIEN S P

> abort all deadlocked processes
»abort 1 process at a time until the deadlock cycle

88/112

1/29/23, 5:22 PM Memo_COA

The banker’s algorithm

« A state is safe iff there exists a sequence
{P1..Pn} where each Pi is allocated all of its
needed resources to be run to completion

& i.e.: we can always run all the processes to
completion from a safe state

= The safety algorithm is the part that
determines if a state is safe

« Initialization:
all processes are said to be “unfinished”

¢ set the work vector to the amount resources
available: W(i) = V(i) for all i;

Banker’s Algorithm

1. Look for a new row in R which is smaller
than A. If no such row exists the system will
eventually deadlock =» not safe.

2. If such a row exists, the process may finish.
mark that process (row) as terminate and add
all of its resources to A.

3. Repeat Steps 1 and 2 until all rows are
marked =» safe state

If some are not marked = not safe.

30

file:///C:/Users/User/Downloads/Memo_COA.html 89/112

1/29/23, 5:22 PM

Memo_COA

Example of Banker’s Algorithm

Allocation Need Available
ABC ABC ABC
PO 010 PO 743 332
P1 200 P1 122
P2 302 P2 600
P3 211 P3 011
P4 002 P4 431

Try to find a row in Need; that is <= Available.

P1;
P3.
P4.
P2.
PO.

run completion. Available becomes =[332] +[200] =[5 3 2]
run completion. Available becomes =[532] +[21 1] =[7 4 3]
run completion. Available becomes = [74 3] +[00 2] =[7 4 5]
run completion. Available becomes =[74 5]+ [302] =[104 7]
run completion. Available becomes =[104 7]+ [010]=[1057]

We found a sequence of execution: P1, P3, P4, P2, P0. State is safe

40

"1 Banker's Algorithm for a single resource

Has Max

6

0
0
0

2o |-

]

%)
4
7

Any sequence finishes

Free: 10

Has Max

b | — | —

2o

4

R RN R}

Free: 2
C.B.A.D finishes

Has Max

1
2
2

=N N N--N

4

Free: 1
Deadlock (unsafe state)

m Bankers” algorithm: before granting a request, ensure that a
sequence exists that will allow all processes to complete

Use previous methods to find such a sequence

If a sequence exists, allow the requests

If there’s no such sequence, deny the request
m Can be slow: must be done on each request!

1. Using the banker’s algorithm, determine whether the following state is unsafe based on
the snapshot of the system below. If the state is safe, provide a safe sequence of
execution. Otherwise explain why it is unsafe. Show your calculations for full credit.

Allocation
A B C D
Po 3 01 4
Py 2 21 0
P2 3 1 2 1
] 0 51 0
Ps 4 2 1 2

file:///C:/Users/User/Downloads/Memo_COA.html

Max (Demand)

Ak wwun >

w o wWwmN = m

t

N RN R

(50 SR TN v

[10 points]

Available = (1,0, 0, 2)

90/112

1/29/23, 5:22 PM Memo_COA

Sample question (bankers algorithm)

Allocation Max Nead Available

3221

A BCD ABCD A B CTD ABCD
i2t] 4 01 T 0021
Pl 11 00 1 6 5 0
|7 1 0 4 3 313 4 06
P3 o 4 21 1 5 6 2
P4 031 2 14 32

Using Bankers algorithm answer the following:

-

How many resources of type A, B, C and D are there?

2. What are the contents of the Need matrix?

3. Is the system in a safe state? Provide reasoning for your answer (show the
sequence in which the processes would finish)

4. If a request from process P2 arrives for additional resources of {0, 2, 0, 0},

can the Bankers algorithm grant the request immediately? Provide reasoning

for your answer. (14 Marks)

Ql. Deadlocks. The Banker's algorithm is used for deadlock avoidance. Consider the state of resource
availability and allocation defined by the following matrices.

Claim Matrix Allocation Matrix
R1 R2 R3 R1 R2 R3
P1 3 1 4 P1 2 1 1
P2 6 1 3 P2 5 1 1
P3 3 2 2 P3 2 0 1
P4 4 2 2 P4] 0 2

(1

Assuming that the total amounts for resources R1, R2, and R3 are 10, 2, and 10, should a new
request to the Banker’s algorithm by process P3 to acquire one additional resource from R1 and
one additional resource from R3 be approved or denied? Explain why or why not.

(2

Assuming that the total amounts for resources R1, R2, and R3 are 10, 2, and 10, should a new
request to the Banker’s algorithm by process P4 to acquire one additional resource from R3 be
approved or denied? Explain why or why not.

(3

Assuming that the total amounts for resources R1 and R2 are 10 and 2, what is the minimum
amount for resource R3 that would render the above state a safe state under the Banker's
algorithm?

(4

Given your answer for part (3) what are all the possible orderings for the four processes P1, P2,
P3, and P4 to complete their execution subject to the Banker’s algorithm.

(5

Assuming that the total amounts for resources R1 and R2 are 10 and 2, what is the minimum
amount for resource R3 that would make it possible for the Banker’s algorithm to allow process
P1 to complete its execution before all other three processes?

The Banker’s Algorithm

e Idea: know what
each process
might ask for

* Only make
allocations that
leave the system
in a safe state

¢ Inefficient

deadlock

unsafe

Resource allocation
state space

file:///C:/Users/User/Downloads/Memo_COA.html 91/112

1/29/23, 5:22 PM Memo_COA

o |
L skl
= =

A

-

r 27
Jenny's Lectures
St o Wiprten ey

Jenny's Lectures
proere Auyfemet Rbwti

file:///C:/Users/User/Downloads/Memo_COA.html 92/112

1/29/23, 5:22 PM Memo_COA

| | Allogx oafion | (Max /;;»wil | _Need /)
fABcopBcDABeplpBe D Need Mahix? Ter
o200 1|y I (332 1|g &l ’ U I syfstem i Sofe dleke It Ty
Jenny's Lecturej’I a]]s 2 §3 2 131 { C 5
Rl il b auiveste

‘ 2316 o213 3l rpuet frore

[RI=88) 03)
9 %)) (0 0) (an TfEAT BS
. y (,(,0,0 1
P} | 3 |2 (I | Ol 1 \1// ~.r csnted 7
2|3 6 ¢S 233 mmedidiC RIS
Palt u32? { l2 23 D i veruest fons B SIS

A |
q 9 6 ﬁ NO : S o) Canit be ""\"\f(ws
ﬁqou«c QL&F&W = S 0,2,

sk - If R uggke < Needs then gade shep 2.)
Eﬁ ;M:Lub\g e () J"‘f’ I‘[medili ed A@r0uAcE~ qllcc-%ux Afode 8 4.::(.(
Sl'_‘tz '{' @ at; < Availible then ¥ + d*fl Hhen rﬁ{ubﬂ' ahr nhed

OH\é«uuL f will wait oheawde P will vt & old alloehe,

g(i S'askm FKRNX %(L m«z& M\x?'\(nhed
a madifying e kb Llloay

“w\«me - = Repuutp

Allecakiony 4= Reiu“

—— 1\£\ \»\#

Alde W vegtrd

aF]| T ’ e /

Allows the digetem do enken into deadlocked 4k
Deadloek dekechon Qﬂ_aaanma ('l/{d["i)

1
Jenny's Lectures
S St i aen e

Ko co\lud ‘{’(CL‘N%L{M

\J

Sma le T'\ékmc

(ot gy (B
RO eterlcacle)

Mulbple rafances

Jennys lfctures -
fref"’f’%m ‘4 '{uowu & frocesses) ([rocen Teaminaten) L

L L, Abort o20 awuactcd Procones

L‘ f)zre emﬁ Adome Aegoulled ‘

P 1o .
ﬂ[__ " Abert one precen ot o Fime and
S8 UL bk DR decide next+ abovt O{HA clesdleck
ken detection \ -
R
dedechen @ L’Wk&
Oa n
A will Gmpule befiae Comp le hiown
oL M eA f Ray UAgg
0w Prany o5 e process negdy 4o gn-F\cK % f"m\l\“,

Process Create

file:///C:/Users/User/Downloads/Memo_COA.html 93/112

1/29/23, 5:22 PM

Memo_COA

" A
Process Creation

" & =tk # 5 i

UNIX/Linux Process Creation

m fork system call

» Create a new (child) process

» The new process duplicates the address space of its parent

» Child & Parent execute concurrently after fork

» Child: return value of fork is 0

» Parent: return value of fork is PID of the child process
m execlp system call

» Load a new binary file into memory — destroying the old code
® wait system call

» The parent waits for one of its child processes to complete

Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 25

" e S Y

UNIX/Linux Process Creation

m Memory space of fork():
» Old implementation: A’s child is an exact copy of parent

> Current implementation: use copy-on-write technique to
store differences in A’s child address space

free memory
free memory free memory .
A's child
free memory free memory free memory
A A
=N ™ L= nel ~ kernel
Originally After A does After the child
an fork does an execlp
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 26

file:///C:/Users/User/Downloads/Memo_COA.html

94/112

1/29/23, 5:22 PM Memo_COA

UNIX/Linux Example

#include <stdio.h>

vOIa malr

Process Termination

m Terminate when the last statement is executed or
exit() is called

> All resour

file:///C:/Users/User/Downloads/Memo_COA.html 95/112

1/29/23, 5:22 PM

Memo_COA

Shared Memory

m Processes are responsible tor

» Establishing are

Consumer & Producer Problem

m Producer process produces information that is
consumed by a Consumer process

m Buffer as a circular array with size B
> next free: in out
> first available: out
» empty: in = out in —
> full: (in+1) % B = out
Chapter3 Processes Concept Operating System Concepts - NTHU LSA Lab 37
" S ;
W 8= g
Shared-Memory Solution
/*producer*/
while (1) { -
while (((in + 1) % BUFFER_SIZE) == out)
; //wait if buffer is full in—") — out

Chapter3 Processes Concept

file:///C:/Users/User/Downloads/Memo_COA.html

buffer[in] = nextProduced;
in = (in + 1) % BUFFER_SIZE;
}
/*consumer*/
while (1) {

while (in == out); //wait if buffer is empty

nextConsumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;
}

/* global data structure */
#define BUFSIZE 10
item buffer[BUFSIZE];

int in=out=0;

S out

Operating System Concepts - NTHU LSA Lab 38

96/112

1/29/23, 5:22 PM Memo_COA

- S PN &

Message-Passing System

m Mechanism for processes to communicate and
synchronize their actions

m |PC facility provides two operations:

» Send(message) — message size fixed or variable

ocesses communicate without

8t
Message-Passing System

m Implementation of communication link
» physical (e.g., shared memory, HW bus, or network

> logical (e.g., logical properties)
+ Direct or indirect communication
+ Symmetric or asymmetric communication
+ Blocking or non-blocking '
+ Automatic or explicit buffering
+ Send by copy or send by reference
+ Fixed-sized or variable-sized messages

* N & =1 ¥ x

Message-Passing System

m Mechanism for processes to communicate and
synchronize their actions

m |PC facility provides two operations:
» Send(message) — message size fixed or variable

» Receive(rr

ate without

file:///C:/Users/User/Downloads/Memo_COA.html

97/112

1/29/23, 5:22 PM Memo_COA

Communication Methods

m Sockets:

> A network con

+«— Socket interface —

Network Network
stack (0S) stack (0S)
CAEN S R

Sockets |
m Considered as a low-level form of communication
unstructured stream of bytes to be exchanged

m Data parsing responsibility falls upon the server and
the client applications

|
HTTP example:

Clien HTTP/1.1 200 OK

Date: Mon, 23 May 2005 22:38:34 GMT !
Server: Apache/1.3.3.7 !

Last-Modified: Wed, 08 Jan 2003 23:11:55 GMT

Serv

GET /index.htm| HTTP/1.1
Host: www.example.com

file:///C:/Users/User/Downloads/Memo_COA.html 98/112

1/29/23, 5:22 PM Memo_COA

" SN
Sockets

Server
m A socket is identified by a (161.25.19.8)
concatenation of IP address
and port number
m Communication consists
between a pair of sockets

m Use 127.0.0.1 to refer itself

J socket() |

Client

(146.86.5.20)

" Remote Procedure Calls: RPC & =H # x4

m Remote procedure call (RPC) abstracts procedure
calls between processes on netw

orked systems

» allows programs to othe

mnachine

- Client and Server Stubs CAENS 8 P

Client stub:
*Packs parameters into a messag
*Calls OS to send directly to the

*\Waits for result

e. parameter marshaling)

Client

Threads

file:///C:/Users/User/Downloads/Memo_COA.html 99/112

1/29/23, 5:22 PM Memo_COA

Thread Control Block

* Thread Control Block (TCB) is a data structure in the operating system kernel
which contains thread-specific information needed to manage it. The TCB is "the
manifestation of a thread in an operating system".

* An example of information contained within a TCB is:

¢ Stack pointer: Points to thread's stack in the process

* Program counter

* State of the thread (running, ready, waiting, start, done)

* Thread's register values

* Pointer to the Process control block (PCB) of the process that the thread lives on

The Thread Control Block acts as a library of information about the threads in a
system. Specific information is stored in the thread control block highlighting
important information about each thread.

Threads L s

m A.k.a lightweight process: [] =

basic unit of CPU utilization

code
m All threads belonging to the El -
same process share E]

]

3‘— Pread

» code section, data section,
and OS resources (e.g. open
files and signals) m_,g

~~ |l&] [#]fl¢]

m But each thread has its own

» thread ID, program counter,
register set, and a stack

Chapter3 Processes Concept Operating System Concepts ~ NTHU LSA Lab 6

file:///C:/Users/User/Downloads/Memo_COA.html 100/112

1/29/23, 5:22 PM Memo_COA

o
&

T
S a—

DATA

multiple processes
one thread per process

multiple processes
multiple threads per process

e

5 = instruction trace

Figure 4.1 Threads and Processes [ANDE97]

file:///C:/Users/User/Downloads/Memo_COA.html 101/112

1/29/23, 5:22 PM Memo_COA

o~

It is lightweight entity. It is heavy weight entity

If a thread ends working process keep working. Process may keep working and if a process
terminates all its threads will terminate also.

Communication b/w threads happens via memory. Communication b/w Process happens via OS.

The Creation of thread and context switching is The creation of the process is expensive.
inexpensive

file:///C:/Users/User/Downloads/Memo_COA.html 102/112

1/29/23, 5:22 PM Memo_COA

' S 3 -
CAENC 8 2

Motivation

m Example: a web browser

» One thread displays contents while the other thread
receives data from network

m Example: a web server
» One request / process: poor performance

» One request / thread: better performance as code and
resource sharing

m Example: RPC server

» One RPC request / thread
(2) create new
(1) request thread to service

s |

When a request is issued,
creates (or notifies) a thread

3) resume listenin
to serve the request. () Iheuime istecing
Chapterd Mc client requests 4
' JEE .
EAEN

Benefits of Multithreading

m Responsiveness: allow a program to continue running
even if part of it is blocked or is performing a lengthy
operation

m Resource sharing: several different threads of activity
all within the same address space

m Utilization of MP arch.: Several thread may be running
in parallel on different processors

m Economy: Allocating memory and resources for process
creation is costly. In Solaris, creating a process is about
30 times slower than is creating a thread, and context
switching is about five times slower. A register set
switch is still required, but no memory-management
related work is needed

Chapterd Multithreaded Operating System Concepts ~ NTHU LSA Lab 5

Challenges in Multicore Programming

S . :
' & =1 # <4

m Dividing activities: divide program into
concurrent tasks

m Data splitting: divide data accessed and
manipulated by the tasks

m Data dependency: synchronize data access
m Balance: evenly distribute tasks to cores

m Testing and debugging

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 8

file:///C:/Users/User/Downloads/Memo_COA.html 103/112

1/29/23, 5:22 PM Memo_COA

' &5tk ¥ A
User vs. Kernel Threads

m User threads — thread management done by user-
level threads library
» POSIX Pthreads
» Win32 threads
» Java threads
m Kernel threads — supported by the kernel (OS)
directly
» Windows 2000 (NT)
» Solaris
» Linux
» Tru64 UNIX

Chapterd Multithreaded Operating System Concepts ~ NTHU LSA Lab 9

' S 3 3
= RS
User vs. Kernel Threads

m User threads

» Thread library provides support for thread creation,
scheduling, and deletion

> Generally fast to create and manage
» If the kernel is single-threaded, a user-thread blocks =»
entire process blocks even if other threads are ready to
run
m Kernel threads
» The kernel performs thread creation, scheduling, etc.
» Generally slower to create and manage

> If athread is blocked, the kernel can schedule another
thread for execution

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 10

ST ‘ &2k %
Shared-Memory Programming

u Definition: Processes communicate or work together
with each other through a shared memory space

which can be accessed by all processes
» Faster & more efficient than message passing

® Many issues as well

file:///C:/Users/User/Downloads/Memo_COA.html 104/112

1/29/23, 5:22 PM Memo_COA

" S
What is Pthread?

m Historically, hardware vendors have implemented
their own proprietary versions of threads
u (Potable Operating “ystem Interface)

standard is specified for portability across Unix-like

Pthread Creation s

m pthread_create(thread,attr,routine,arg)
> thread: An unique identifier (token) for the new thread
> attr: Itis used to set thread attributes. NULL for the default value:
> routine: The routine that the thread will execute once it is create«
> arg: A single argument that may be passed to routine
main 'program thread1

pthread_create(&thread1, NULL, funct, &arg); ———> Tunc(8ara) {

o : (___________._—retum('status)
pthread_join(thread1, *status); }

Chapter4 Multithreaded *Operating System Concepts - NTHU LSA Lab 19

= > YouTube operating system

m pthread_join(threadld, status)
» Blocks until the specified threadld thread terminates
» One way to accomplish synchronization between threads
» Example: to create a pthread barrier
for (int i=0; i<n; i++) pthread_join(thread[i], NULL);

m pthread_detach(threadld)
» Once a thread is detached, it can never be joined
> Detach a thread could free some system resources

Master
'_1.-_“/ - R et r)
I
Thread
DO WORK ——
Thread

pthread exit()|

file:///C:/Users/User/Downloads/Memo_COA.html 105/112

1/29/23, 5:22 PM Memo_COA
|

Semantics of fork() and exec() =

m Does fork() duplicate only the calling thread
or all threads?

» Some UNIX system support two versions of fork()

m execlp() works the same; replace the entire
process

> If exec() is called immediately after forking, then
0
12

duplicating all threads is unnecessary
PO PO P1 P P1
in iTz iTz i T2
" 26
=
A) B =1 F g
Signal Handling L

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab
m Signals (synchronous or asynchronous) are used in UN
systems to notify a process that an event has occurred
» Synchronous: illegal memory access
» Asynchronous: <control-C>
m Asignal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled
m Options
» Deliver the signal to the thread to which the signal applies
» Deliver the signal to every thread in the process
» Deliver the signal to certain threads in the process

» Assign a specific thread to receive all signals for the process
Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 28

Thread Pools W s 2

m Create a number of threads in a pool where
they await work
m Advantages

» Usually slightly faster to service a request with an
existing thread than create a new thread

» Allows the number of threads in the application(s)
to be bound to the size of the pool

m # of threads: # of CPUs, expected # of
requests, amount of physical memory

Chapterd Multithreaded Operating System Concepts - NTHU LSA Lab 29

I/0 System Mangement

file:///C:/Users/User/Downloads/Memo_COA.html 106/112

1/29/23, 5:22 PM Memo_COA

|/O Hardware

* Computers support a wide variety of /O devices, but common concepts
apply to all:

— Port: connection point for a device

— Bus: set of wires that connects to many devices, with a protocol
specifying how information can be transmitted over the wires

— Controller: a chip (or part of a chip) that operates a port, a bus, or a
device

* How can the processor communicate with a device?

— Special instructions allow the processor to transfer data and
commands to registers on the device controller

— The device controller may support memory-mapped 1/0:
— The same address bus is used for both memory and device access.

— The same CPU instructions can access memory locations or

devices.
User
SR MR
Application
Y
Software o Operating System <=

>
l—

Device Driver

=
k|

Hardware in
most case | Device

file:///C:/Users/User/Downloads/Memo_COA.html 107/112

1/29/23, 5:22 PM Memo_COA

User Space

os/

Kernel Space .
OS-specific

Verticals

Device
Drivers
Device-specific

Hardware
" Protocol specific

s/
Horizontals

Kemel Space

H/W Space
Hardware

Protocol

Device Controller

'

:
0
:
monitor processor 8
cache
graphics bridge/memory | |
controller controller Ll el SCSI controller
| PCl bus

IDE disk controller e"ﬁgt’;ﬂg';;’us keyboard

@ @ (] expansion bus
TN =l B

file:///C:/Users/User/Downloads/Memo_COA.html

108/112

1/29/23, 5:22 PM Memo_COA

71/0 Methods Categorization gy s

m Depending on how to address a device:

> Port-mapped |/O

Jse different ac

® Uo

» .'"-..’ S

"
I/O Methods Categorization

m Depending on how to interact with a device:

» Pall (busy-waiting): processor periodically check
status register o
» Interrupt: device notify proces

m D¢

IO System Performance
|
Common Concepts in |/O Hardware

» Common concepts: signals from 1/O devices interface with com-
puter.

» Port: connection point for device

» Bus: set of wires and a protocol that specifies a set of messages
that can be sent on the wires.

» Controller: a collection of electronics that can operate a port, a bus,
or a device.

» Sometimes integrated and sometimes separate circuit board (host
adapter)
» Contains processor, microcode, private memory, bus controller, etc

- Amir H. Paybersh (Tehran Polytechnic) 1/0 Systems 1393/9/15 657

file:///C:/Users/User/Downloads/Memo_COA.html 109/112

1/29/23, 5:22 PM

file:///C:/Users/User/Downloads/Memo_COA.html

kernel user {

Two 1/0 Methods

Memo_COA

requesting process 1
walting requesting process ; user
<
device driver device driver
i 1 L
1 interrupt handler v tinterrupt handler kernal
L] LI
hardware l hardware
— data transfer — ==data transher ——
o
timg —— timg ——
(a) (b}

Interrupt-Driven 1/O Cycle

retums from intermupt

E

CPU resumes
processing of
interrupted task

CPU 110 controller
1
—* device driver inifiates /0 K
. initiates 'O
i
CPU executing checks for
! T : <
' 3
i
¥
CPU racaiving interrupt, 4 input ready, output
transfers control to plete, or error
interrupt handler generates interrupt signal
-
s
interrupt handlar
processes dala.

‘perating System Concepts — 7= Edition, Jan 2, 2005

Silberschatz, Gnlvin.nnﬂ Gagne
mnnnc

110/112

1/29/23, 5:22 PM

Memo_COA

Life Cycle of An I/0 Request

Operating System Concepls

= 1/0 completed,
request IO process input data available, or
output completed
I
system call retum from system call
kntrnt transfer data
can already 1/Q subsystem (it iate) o process,
salisly request? oo return completion
or error e
TData already in bt]
Ex read ahead
send requesl o device
driver, block process if kernal
appropriale 1/Q subsystem
Progess faguesh lssus determine which 1/O
E il device completed, indicate state
configure controller to driver change 1o /0 subsystem
block until interrupted
P receive interrupt, slore
device contraller commands h m: data in device-driver buffer
aliial it input, signal to unblock
device driver
interrupt
|
device
monilor device, controller
interrupt when 170 - :‘%;?:m?{ﬁm
completed Y
tme
13.25 Silberschatz, Galvin and Gagne ®2002

DMA(Direct Memroy Access)

Syslem Bus

Conftroller generates

interrupt when transfer is Processor WITH DMA
finished
CPU T
DA
request
/O device
————— DMA controller eg : Hard drive

Transfer to and fram ~
v
N

RAM

-

file:///C:/Users/User/Downloads/Memo_COA.html

memory

When RAM needs data from an /O device |, the
CPU signals a DMA request to the DMA controller ,
along with transfer size , destination address and
other important information .

The DMA controller transfers data while the system
bus is free , it generates RAM addresses itself.

A CPU interrupt is generated once the transfer is
done.

Result : CPU is free to do other things |

111/112

1/29/23, 5:22 PM

5. DMA controller transfers
hytes to buffer X,

increasing memory
address and decreasing

Memo_COA

1_device driver is told to

transfer disk data to
buffer at address X

2. device driver tells disk

controller to transfer C
bytes from disk to buffer

at address X

CPU

cache

CuntiC=0
6. when C = 0, DMA DMA/bus/interrupt =5 X
interrunts GPU to signal controller tCPU memory bus memory X buffer
transfer completion -
0 PCI bus —
3. disk controller initiates
DMA transfer
IDE disk contrpller 4 di
- disk controller sends
each byte to DMA
\J controller
@ disk
disk} (disk
#+ Internupt
P Random Access
BG CPU Memory (LA
" BR pp WR Address Data RD WER Address Data
- T Fead control 1 T 1
F - write contral
Address L) ¥
seleci B [3 - Address bus F
:] Daata bus 1
rr kL
ED WE Address Data -
DS DMA Acknowledze
g Divect hlemmory »)
RS access (DA Peripheral
ER Controller DM Request device
—» B
Interrupt

-- Memo End --

file:///C:/Users/User/Downloads/Memo_COA.html

112/112

